Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Aromatic hydrocarbon belts

Abstract

Aromatic hydrocarbon belts (AHCBs) have fascinated scientists for over half a century because of their aesthetically appealing structures and potential applications in the field of carbon nanotechnology. One of the enduring challenges in synthesizing AHCBs is how do we cope with the build-up of energy in the highly strained structures during their synthesis? Successful preparations of AHCBs offer the prospect of providing well-defined templates for the growth of uniform single-walled carbon nanotubes—a long-standing interest in nanocarbon science. In this Review, we revisit the protracted historical background involving the rational design and synthesis of AHCBs and highlight some of the more recent breakthroughs, with emphasis being placed on the different strategies that have been used for building up curved and fused benzenoid rings into molecular belts. We also discuss the scientific challenges in this fledgling field and provide some pointers as to what could transpire in years to come.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: History and structural formulae of aromatic hydrocarbon belts.
Fig. 2: Top-down syntheses of cyclophenacenes and Vögtle belts from fullerenes.
Fig. 3: Syntheses of carbon nanobelts.
Fig. 4: Substrate-directed syntheses of cyclacenes.
Fig. 5: On-surfaces syntheses of cyclacenes36.
Fig. 6: Synthesis of beltarenes from resorcinarenes by stitching-up-fjords strategy.
Fig. 7: The synthesis of a zigzag carbon nanobelt96.
Fig. 8: The synthesis of an octabenzo[12]cyclacene97.
Fig. 9: Structural traits of AHCBs and proposed bottom-up syntheses of uniform CNTs, ladder oligomers and large fullerenes.

References

  1. 1.

    Diederich, F. et al. All-carbon molecules: Evidence for the generation of cyclo[18]carbon from a stable organic precursor. Science 245, 1088–1090 (1989).

    CAS  PubMed  Google Scholar 

  2. 2.

    Stoddart, J. F. All-carbon compounds. Towards the cyclo[n]carbons. Nature 342, 482–483 (1989).

    Google Scholar 

  3. 3.

    Stoddart, J. F. The third allotropic form of carbon. Angew. Chem. Int. Ed. Engl. 30, 70–71 (1991).

    Google Scholar 

  4. 4.

    Petrukhina, M. A. & Scott, L. T. Fragments of Fullerenes and Carbon Nanotubes (Wiley, 2011).

  5. 5.

    Siegel, J. S. Allotropy by design–Carbon nanohoops. Science 356, 135–136 (2017).

    CAS  PubMed  Google Scholar 

  6. 6.

    Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    CAS  Google Scholar 

  7. 7.

    Smalley, R. E. Discovering the fullerenes (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 36, 1594–1601 (1997).

    Google Scholar 

  8. 8.

    Kroto, H. Symmetry, space, stars, and C60 (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 36, 1578–1593 (1997).

    Google Scholar 

  9. 9.

    Curl, R. F. Dawn of the fullerenes: conjecture and experiment (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 36, 1566–1576 (1997).

    Google Scholar 

  10. 10.

    Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    CAS  Google Scholar 

  11. 11.

    Heilbronner, E. Molecular orbitals in homologen reihen mehrkerniger aromatischer kohlenwasserstoffe: I. Die eigenwerte von LCAO-MO’s in homologen reihen. Helv. Chim. Acta 37, 921–935 (1954).

    CAS  Google Scholar 

  12. 12.

    Vögtle, F. Cyclophanes II. Concluding remarks. Top. Curr.Chem. 115, 157–159 (1983).

    Google Scholar 

  13. 13.

    Kohnke, F. H., Slawin, A. M. Z., Stoddart, J. F. & Williams, D. J. Molecular belts and collars in the making: A hexaepoxyoctacosahydro[12]cyclacene derivative. Angew. Chem. Int. Ed. Engl. 26, 892–894 (1987).

    Google Scholar 

  14. 14.

    Ashton, P. R. et al. Towards the making of [12]collarene. Angew. Chem. Int. Ed. Engl. 27, 966–969 (1988).

    Google Scholar 

  15. 15.

    Cory, R. M., McPhail, C. L., Dikmans, A. J. & Vittal, J. J. Macrocyclic cyclophane belts via double Diels–Alder cycloadditions: Macroannulation of bisdienes by bisdienophiles. Synthesis of a key precursor to an [8]cyclacene. Tetrahedron Lett. 37, 1983–1986 (1996).

    CAS  Google Scholar 

  16. 16.

    Cory, R. M. & McPhail, C. L. Transformations of a macrocyclic cyclophane belt into advanced [8]cyclacene and [8]cyclacene triquinone precursors. Tetrahedron Lett. 37, 1987–1990 (1996).

    CAS  Google Scholar 

  17. 17.

    Godt, A., Enkelmann, V. & Schlüter, A. D. Double-stranded molecules: a [6]beltene derivative and the corresponding open-chain polymer. Angew. Chem. Int. Ed. Engl. 28, 1680–1682 (1989).

    Google Scholar 

  18. 18.

    Kintzel, O., Luger, P., Weber, M. & Schlüter, A. D. Ring-chain equilibrium between an [18]cyclacene derivative and a ladder oligomer. Eur. J. Org. Chem. 1998, 99–105 (1998).

    Google Scholar 

  19. 19.

    Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: Carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis of a carbon nanobelt. Science 356, 172–175 (2017).

    CAS  PubMed  Google Scholar 

  21. 21.

    Cheung, K. Y. et al. Synthesis of armchair and chiral carbon nanobelts. Chem 5, 838–847 (2019).

    CAS  Google Scholar 

  22. 22.

    Shi, T.-H., Guo, Q.-H., Tong, S. & Wang, M.-X. Toward the synthesis of a highly strained hydrocarbon belt. J. Am. Chem. Soc. 142, 4576–4580 (2020).

    CAS  PubMed  Google Scholar 

  23. 23.

    Sisto, T. J., Zakharov, L. N., White, B. M. & Jasti, R. Towards π-extended cycloparaphenylenes as seeds for CNT growth: investigating strain relieving ring-openings and rearrangements. Chem. Sci. 7, 3681–3688 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat. Rev. Mater 1, 15002 (2016).

    CAS  Google Scholar 

  25. 25.

    Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992).

    CAS  Google Scholar 

  26. 26.

    Liu, B., Wu, F., Gui, H., Zheng, M. & Zhou, C. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11, 31–53 (2017).

    CAS  PubMed  Google Scholar 

  27. 27.

    Harris, P. J. F. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge Univ. Press, 2003).

  28. 28.

    Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, 2001).

  29. 29.

    Shi, T.-H., Tong, S. & Wang, M.-X. Construction of hydrocarbon nanobelts. Angew. Chem. Int. Ed. 59, 7700–7705 (2020).

    CAS  Google Scholar 

  30. 30.

    Xia, Z., Pun, S. H., Chen, H. & Miao, Q. Synthesis of zigzag carbon nanobelts through Scholl reactions. Angew. Chem. Int. Ed. https://doi.org/10.1002/ange.202100343 (2021).

  31. 31.

    Nakamura, E., Tahara, K., Matsuo, Y. & Sawamura, M. Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. J. Am. Chem. Soc. 125, 2834–2835 (2003).

    CAS  PubMed  Google Scholar 

  32. 32.

    Matsuo, Y., Tahara, K., Sawamura, M. & Nakamura, E. Creation of hoop- and bowl-shaped benzenoid systems by selective detraction of [60]fullerene conjugation. [10]Cyclophenacene and fused corannulene derivatives. J. Am. Chem. Soc. 126, 8725–8734 (2004).

    CAS  PubMed  Google Scholar 

  33. 33.

    Matsuo, Y., Tahara, K. & Nakamura, E. Synthesis and electrochemistry of double-decker buckyferrocenes. J. Am. Chem. Soc. 128, 7154–7155 (2006).

    CAS  PubMed  Google Scholar 

  34. 34.

    Matsuo, Y., Tahara, K., Morita, K., Matsuo, K. & Nakamura, E. Regioselective eightfold and tenfold additions of a pyridine-modified organocopper reagent to [60]fullerene. Angew. Chem. Int. Ed. 46, 2844–2847 (2007).

    CAS  Google Scholar 

  35. 35.

    Li, Y., Xu, D. & Gan, L. Selective multiamination of C70 leading to curved π systems with 60, 58, 56, and 50 π electrons. Angew. Chem. Int. Ed. 55, 2483–2487 (2016).

    CAS  Google Scholar 

  36. 36.

    Schulz, F. et al. Exploring a route to cyclic acenes by on-surface synthesis. Angew. Chem. Int. Ed. 58, 9038–9042 (2019).

    CAS  Google Scholar 

  37. 37.

    Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis and size-dependent properties of [12], [16], and [24]carbon nanobelts. J. Am. Chem. Soc. 140, 10054–10059 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Cory, R. M. & McPhail, C. L.Fascinating Stops on the Way to Cyclacenes and Cyclacene Quinones: A tour guide to synthetic progress to date. In Advances in Theoretically Interesting Molecules Vol. 4 (ed. Thummel, R. P.) 53–80 (JAI Press, 1998).

  39. 39.

    Iyoda, M., Kuwatani, Y., Nishinaga, T., Takase, M. & Nishiuchi, T. Conjugated molecular belts based on 3D benzannulene systems. In Fragments of Fullerenes and Carbon Nanotubes (eds Petrukhina, M. A. & Scott, L. T.) 311–342 (2011).

  40. 40.

    Tahara, K. & Tobe, Y. Molecular loops and belts. Chem. Rev. 106, 5274–5290 (2006).

    CAS  PubMed  Google Scholar 

  41. 41.

    Eisenberg, D., Shenhar, R. & Rabinovitz, M. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes. Chem. Soc. Rev. 39, 2879–2890 (2010).

    CAS  PubMed  Google Scholar 

  42. 42.

    Segawa, Y., Yagi, A., Matsui, K. & Itami, K. Design and synthesis of carbon nanotube segments. Angew. Chem. Int. Ed. 55, 5136–5158 (2016).

    CAS  Google Scholar 

  43. 43.

    Yao, T., Yu, H., Vermeij, R. J. & Bodwell, G. J. Nonplanar aromatic compounds. Part 10: a strategy for the synthesis of aromatic belts—all wrapped up or down the tubes? Pure Appl. Chem. 80, 533–546 (2008).

    CAS  Google Scholar 

  44. 44.

    Türker, L. & Gümüş, S. Cyclacenes. J. Mol. Struct. THEOCHEM 685, 1–33 (2004).

    Google Scholar 

  45. 45.

    Gleiter, R., Esser, B. & Kornmayer, S. C. Cyclacenes: Hoop-shaped systems composed of conjugated rings. Acc. Chem. Res. 42, 1108–1116 (2009).

    CAS  PubMed  Google Scholar 

  46. 46.

    Shi, T.-H. & Wang, M.-X. Zigzag hydrocarbon belts. CCS Chem 2, 916–931 (2020).

    Google Scholar 

  47. 47.

    Cheung, K. Y., Segawa, Y. & Itami, K. Synthetic strategies of carbon nanobelts and related belt-shaped polycyclic aromatic hydrocarbons. Chem. Eur. J. 26, 14791–14801 (2020).

  48. 48.

    Chen, H. & Miao, Q. Recent advances and attempts in synthesis of conjugated nanobelts. J. Phys. Org. Chem. 33, e4145 (2020).

  49. 49.

    Hermann, M., Wassy, D. & Esser, B. Conjugated nanohoops incorporating donor-, acceptor-, hetero- or polycyclic aromatics. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202007024 (2021).

  50. 50.

    Scott, L. T. Conjugated belts and nanorings with radially oriented p orbitals. Angew. Chem. Int. Ed. 42, 4133–4135 (2003).

    CAS  Google Scholar 

  51. 51.

    Segawa, Y., Yagi, A., Ito, H. & Itami, K. A theoretical study on the strain energy of carbon nanobelts. Org. Lett. 18, 1430–1433 (2016).

    CAS  PubMed  Google Scholar 

  52. 52.

    Golder, M. R. & Jasti, R. Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena. Acc. Chem. Res. 48, 557–566 (2015).

    CAS  PubMed  Google Scholar 

  53. 53.

    Hitosugi, S., Nakanishi, W., Yamasaki, T. & Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2, 492 (2011).

    Google Scholar 

  54. 54.

    Iwamoto, T., Kayahara, E., Yasuda, N., Suzuki, T. & Yamago, S. Synthesis, characterization, and properties of [4]cyclo-2,7-pyrenylene: Effects of cyclic structure on the electronic properties of pyrene oligomers. Angew. Chem. Int. Ed. 53, 6430–6434 (2014).

    CAS  Google Scholar 

  55. 55.

    Huang, Q. et al. Photoconductive curved-nanographene/fullerene supramolecular heterojunctions. Angew. Chem. Int. Ed. 58, 6244–6249 (2019).

    CAS  Google Scholar 

  56. 56.

    Herges, R. Fully Conjugated beltenes (belt-like and tubular aromatics). In Modern Cyclophane Chemistry (eds Gleiter, R. & Hopf, H.) 337–358 (2005).

  57. 57.

    Kawase, T., Darabi, H. R. & Oda, M. Cyclic [6]- and [8]paraphenylacetylenes. Angew. Chem. Int. Ed. Engl. 35, 2664–2666 (1996).

    CAS  Google Scholar 

  58. 58.

    Kawase, T., Tanaka, K., Shiono, N., Seirai, Y. & Oda, M. Onion-type complexation based on carbon nanorings and a buckminsterfullerene. Angew. Chem. Int. Ed. 43, 1722–1724 (2004).

    CAS  Google Scholar 

  59. 59.

    Segawa, Y., Levine, D. R. & Itami, K. Topologically unique molecular nanocarbons. Acc. Chem. Res. 52, 2760–2767 (2019).

    CAS  PubMed  Google Scholar 

  60. 60.

    Choi, H. S. & Kim, K. S. Structures, magnetic properties, and aromaticity of cyclacenes. Angew. Chem. Int. Ed. 38, 2256–2258 (1999).

    CAS  Google Scholar 

  61. 61.

    Chen, Z. et al. Open-shell singlet character of cyclacenes and short zigzag nanotubes. Org. Lett. 9, 5449–5452 (2007).

    CAS  PubMed  Google Scholar 

  62. 62.

    Clar, E. The Aromatic Sextet (Wiley, 1972).

  63. 63.

    Clar, E. Polycyclic Hydrocarbons. (Academic Press, 1964).

  64. 64.

    Deichmann, M., Nather, C. & Herges, R. Pyrolysis of a tubular aromatic compound. Org. Lett. 5, 1269–1271 (2003).

    CAS  PubMed  Google Scholar 

  65. 65.

    Schaller., G. R. & Herges, R. Aromatic belts as sections of nanotubes. In Fragments of Fullerenes and Carbon Nanotubes (eds Petrukhina, M. A. & Scott, L. T.) 259–289 (2011).

  66. 66.

    Vögtle, F., Schröder, A. & Karbach, D. Strategy for the synthesis of tube-shaped molecules. Angew. Chem. Int. Ed. Engl. 30, 575–577 (1991).

    Google Scholar 

  67. 67.

    Golling, F. E., Quernheim, M., Wagner, M., Nishiuchi, T. & Müllen, K. Concise synthesis of 3D π-extended polyphenylene cylinders. Angew. Chem. Int. Ed. 53, 1525–1528 (2014).

    CAS  Google Scholar 

  68. 68.

    Yagi, A., Segawa, Y. & Itami, K. Armchair and chiral carbon nanobelts: Scholl reaction in strained nanorings. Chem 5, 746–748 (2019).

    CAS  Google Scholar 

  69. 69.

    Sekiguchi, R. et al. Preparation of a cyclic polyphenylene array for a zigzag-type carbon nanotube segment. J. Org. Chem. 80, 5092–5110 (2015).

    CAS  PubMed  Google Scholar 

  70. 70.

    Korich, A. L., McBee, I. A., Bennion, J. C., Gifford, J. I. & Hughes, T. S. Synthesis and photophysical properties of biphenyl and terphenyl arylene−ethynylene macrocycles. J. Org. Chem. 79, 1594–1610 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Merner, B. L., Dawe, L. N. & Bodwell, G. J. 1,1,8,8-Tetramethyl[8](2,11)teropyrenophane: half of an aromatic belt and a segment of an (8,8) single-walled carbon nanotube. Angew. Chem. Int. Ed. 48, 5487–5491 (2009).

    CAS  Google Scholar 

  72. 72.

    Stoddart, J. F. Unnatural product synthesis. Nature 334, 10–11 (1988).

    Google Scholar 

  73. 73.

    Myśliwiec, D. & Stępień, M. The fold-in approach to bowl-shaped aromatic compounds: Synthesis of chrysaoroles. Angew. Chem. Int. Ed. 52, 1713–1717 (2013).

    Google Scholar 

  74. 74.

    Yang, Y., Yuan, L., Shan, B., Liu, Z. & Miao, Q. Twisted polycyclic arenes from tetranaphthyldiphenylbenzenes by controlling the Scholl reaction with substituents. Chem. Eur. J. 22, 18620–18627 (2016).

    CAS  PubMed  Google Scholar 

  75. 75.

    Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967).

    CAS  Google Scholar 

  76. 76.

    Pedersen, C. J. The discovery of crown ethers (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988).

    Google Scholar 

  77. 77.

    Gutsche, C. D., Dhawan, B., No, K. H. & Muthukrishnan, R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc. 103, 3782–3792 (1981).

    CAS  Google Scholar 

  78. 78.

    Gutsche, C. D. Calixarenes. Acc. Chem. Res. 16, 161–170 (1983).

    CAS  Google Scholar 

  79. 79.

    Freeman, W. A., Mock, W. L. & Shih, N. Y. Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981).

    CAS  Google Scholar 

  80. 80.

    Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).

    CAS  Google Scholar 

  81. 81.

    Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A. & Nakamoto, Y. para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008).

    CAS  PubMed  Google Scholar 

  82. 82.

    Guo, Q.-H., Fu, Z.-D., Zhao, L. & Wang, M.-X. Synthesis, structure, and properties of O6-Corona[3]arene[3]tetrazines. Angew. Chem. Int. Ed. 53, 13548–13552 (2014).

    CAS  Google Scholar 

  83. 83.

    Wang, M.-X. Coronarenes: Recent advances and perspectives on macrocyclic and supramolecular chemistry. Sci. China Chem. 61, 993–1003 (2018).

    CAS  Google Scholar 

  84. 84.

    San-Fabián, E., Pérez-Guardiola, A., Moral, M., Pérez-Jiménez, A. J. & Sancho-García, J. C. Theoretical study of strained carbon-based nanobelts: structural, energetic, electronic, and magnetic properties of [n]cyclacenes. In Advanced Magnetic and Optical Materials (eds Tiwari, A., Iyer, P. K., Kumar, V., & Swart, H.) 165–183 (Scrivener, 2016).

  85. 85.

    Houk, K. N., Lee, P. S. & Nendel, M. Polyacene and cyclacene geometries and electronic structures: bond equalization, vanishing band gaps, and triplet ground states contrast with polyacetylene. J. Org. Chem. 66, 5517–5521 (2001).

    CAS  PubMed  Google Scholar 

  86. 86.

    Battaglia, S. et al. A theoretical study on cyclacenes: analytical tight-binding approach. Int. J. Quantum Chem. 118, e25569 (2018).

    Google Scholar 

  87. 87.

    Sadowsky, D., McNeill, K. & Cramer, C. J. Electronic structures of [n]-cyclacenes (n = 6–12) and short, hydrogen-capped, carbon nanotubes. Faraday Discuss. 145, 507–521 (2010).

    CAS  Google Scholar 

  88. 88.

    Wu, C. S., Lee, P. Y. & Chai, J. D. Electronic properties of cyclacenes from TAO-DFT. Sci. Rep. 6, 37249 (2016).

    PubMed  PubMed Central  Google Scholar 

  89. 89.

    Battaglia, S., Faginas-Lago, N., Andrae, D., Evangelisti, S. & Leininger, T. Increasing radical character of large [n]cyclacenes unveiled by wave function theory. J. Phys. Chem. A 121, 3746–3756 (2017).

    CAS  PubMed  Google Scholar 

  90. 90.

    Türker, L. Cryptoannulenic behavior of cyclacenes. Polycyclic Aromat. Compd. 4, 191–197 (1994).

    Google Scholar 

  91. 91.

    Loh, K. P., Yang, S. W., Soon, J. M., Zhang, H. & Wu, P. Ab initio studies of borazine and benzene cyclacenes and their fluoro-substituted derivatives. J. Phys. Chem. A 107, 5555–5560 (2003).

    CAS  Google Scholar 

  92. 92.

    Li, Q., Xu, H.-L. & Su, Z.-M. NICS values scan in three-dimensional space of the hoop-shaped π-conjugated molecules [6]8cyclacene and [16]trannulene. New J. Chem. 42, 1987–1994 (2018).

    CAS  Google Scholar 

  93. 93.

    Diels, O. & Alder, K. Synthesen in der hydroaromatischen reihe. Justus Liebigs Ann. Chem 460, 98–122 (1928).

    CAS  Google Scholar 

  94. 94.

    Standera, M. & Schlüter, D. Toward fully unsaturated double-stranded cycles. In Fragments of Fullerenes and Carbon Nanotubes (eds Petrukhina, M. A. & Scott, L. T.) 343–366 (2011).

  95. 95.

    Matsui, K., Fushimi, M., Segawa, Y. & Itami, K. Synthesis, structure, and reactivity of a cylinder-shaped cyclo[12]orthophenylene[6]ethynylene: toward the synthesis of zigzag carbon nanobelts. Org. Lett. 18, 5352–5355 (2016).

    CAS  PubMed  Google Scholar 

  96. 96.

    Cheung, K. Y., Watanabe, K., Segawa, Y. & Itami, K. Synthesis of a zigzag carbon nanobelt. Nat. Chem. 13, 255–259 (2021).

  97. 97.

    Han, Y., Dong, S., Shao, J., Fan, W. & Chi, C. Synthesis of a sidewall fragment of a (12,0) carbon nanotube. Angew. Chem. Int. Ed. 60, 2658–2662 (2021).

  98. 98.

    Elmosalamy, M. A. F., Moody, G. J., Thomas, J. D. R., Kohnke, F. A. & Stoddart, J. F. Studies on two epoxyoctacosahydro[12]cyclacene derivatives as sensor coatings on quartz piezoelectric crystals for detecting aromatic vapours. Anal. Proc. 26, 12–15 (1989).

    CAS  Google Scholar 

  99. 99.

    Ashton, P. R., Isaacs, N. S., Kohnke, F. H., Mathias, J. P. & Stoddart, J. F. Stereoregular oligomerization by repetitive Diels–Alder reactions. Angew. Chem. Int. Ed. Engl. 28, 1258–1261 (1989).

    Google Scholar 

  100. 100.

    Ashton, P. R., Isaacs, N. S., Kohnke, F. H., D’Alcontres, G. S. & Stoddart, J. F. Trinacrene–a product of structure-directed synthesis. Angew. Chem. Int. Ed. Engl. 28, 1261–1263 (1989).

    Google Scholar 

  101. 101.

    Ashton, P. R. et al. Molecular LEGO. 1. Substrate-directed synthesis via stereoregular Diels–Alder oligomerizations. J. Am. Chem. Soc. 114, 6330–6353 (1992).

    CAS  Google Scholar 

  102. 102.

    Raymo, F., Kohnke, F. H. & Cardullo, F. The regioselective generation of arynes from polyhalogenobenzenes. An improved synthesis of syn- and anti-1,4,5,8,9,12-hexahydro-1,4:5,8:9,12-triepoxytriphenylene. Tetrahedron 48, 6827–6838 (1992).

    CAS  Google Scholar 

  103. 103.

    Ashton, P. R., Mathias, J. P. & Stoddart, J. F. The oligoselective syntheses of polyacene derivatives. Synthesis 1993, 221–224 (1993).

  104. 104.

    Ashton, P. R. et al. Molecular belts. 2. Substrate-directed syntheses of belt-type and cage-type structures. J. Am. Chem. Soc. 115, 5422–5429 (1993).

    CAS  Google Scholar 

  105. 105.

    Kohnke, F. H. & Stoddart, J. F. The evolution of molecular belts and collars. Pure Appl. Chem. 61, 1581–1586 (1989).

    CAS  Google Scholar 

  106. 106.

    Kohnke, F. H., Mathias, J. P. & Stoddart, J. F. Structure-directed synthesis of new organic materials. Angew. Chem. Int. Ed. Engl. 28, 1103–1110 (1989).

    Google Scholar 

  107. 107.

    Ellwood, P., Mathias, J. P., Stoddart, J. F. & Kohnke, F. H. Stereoelectronically-programmed molecular ‘LEGO’ sets. Bull. Soc. Chem. Belg. 97, 669–678 (1988).

    CAS  Google Scholar 

  108. 108.

    Antonsson, T. & Vogel, P. Regioselectivity of 7-oxabicyclo[2.2.1]hepta-2,5-diene-phenol rearrangement as a function of the acid promoter. Stereoselective synthesis of 1,2,3,4-tetrahydro-2-hydroxynaphthalen-2-yl methyl ketones. Tetrahedron Lett. 31, 89–92 (1990).

    CAS  Google Scholar 

  109. 109.

    Tornare, J. M. & Vogel, P. The synthesis of (±)‐11‐deoxydaunomycinone via regioselective tandem Diels–Alder reactions. Helv. Chim. Acta 68, 1069–1077 (1985).

    CAS  Google Scholar 

  110. 110.

    Pinkerton, A. A., Schwarzenbach, D., Stibbard, J. H., Carrupt, P. A. & Vogel, P. Nonplanarity of π systems in 5,6-bis(methylene)-7-oxanorborn-2-ene. J. Am. Chem. Soc. 103, 2095–2096 (1981).

    CAS  Google Scholar 

  111. 111.

    Tornare, J. M., Vogel, P., Pinkerton, A. A. & Schwarzenbach, D. Face selectivity of the Diels–Alder additions of sulfur-substituted dienes and tetraenes grafted onto 7-oxabicyclo[2.2.1]heptanes. Helv. Chim. Acta 68, 2195–2215 (1985).

    CAS  Google Scholar 

  112. 112.

    Brown, F. K. & Houk, K. N. Torsional and steric control of stereoselectivity in isodicyclopentadiene cycloadditions. J. Am. Chem. Soc. 107, 1971–1978 (1985).

    CAS  Google Scholar 

  113. 113.

    Harada, T., Takeuchi, M., Hatsuda, M., Ueda, S. & Oku, A. Effects of torsional angles of 2,2′-biaryldiol ligands in asymmetric Diels–Alder reactions of acrylates catalyzed by their titanium complexes. Tetrahedron Asymmetry 7, 2479–2482 (1996).

    CAS  Google Scholar 

  114. 114.

    Iafe, R. G. & Houk, K. N. Stereoselectivity control by torsional steering in an intramolecular Diels–Alder reaction of vinyl oxocarbenium ions. Org. Lett. 8, 3469–3472 (2006).

    CAS  PubMed  Google Scholar 

  115. 115.

    Alston, P. V., Ottenbrite, R. M. & Cohen, T. Secondary orbital interactions determining regioselectivity in the Diels–Alder reaction. 3. Disubstituted dienes. J. Org. Chem. 43, 1864–1867 (1978).

    CAS  Google Scholar 

  116. 116.

    Wannere, C. S. et al. The existence of secondary orbital interactions. J. Comput. Chem. 28, 344–361 (2007).

    CAS  PubMed  Google Scholar 

  117. 117.

    Levandowski, B. J., Svatunek, D., Sohr, B., Mikula, H. & Houk, K. N. Secondary orbital interactions enhance the reactivity of alkynes in Diels–Alder cycloadditions. J. Am. Chem. Soc. 141, 2224–2227 (2019).

    CAS  PubMed  Google Scholar 

  118. 118.

    Stoddart, J. F. Molecular LEGO. Chem. Br. 24, 1203–1208 (1988).

    CAS  Google Scholar 

  119. 119.

    Stoddart, J. F. The making of molecular belts and collars. J. Inclusion Phenom. Mol. Recognit. Chem. 7, 227–245 (1989).

    CAS  Google Scholar 

  120. 120.

    Kohnke, F. H., Mathias, J. P. & Stoddart, J. F. Structure-directed synthesis of unnatural products. In Proceedings of the International Symposium on Chemical and Biochemical Problems in Molecular Recognition, Exeter (ed. Roberts, S. M.) 241–269 (Royal Society of Chemistry, 1989).

  121. 121.

    Mathias, J. P. & Stoddart, J. F. Constructing a molecular LEGO set. Chem. Soc. Rev. 21, 215–225 (1992).

    CAS  Google Scholar 

  122. 122.

    Girreser, U. et al. The structure-directed synthesis of cyclacene and polyacene derivatives. Pure Appl. Chem. 65, 119–125 (1993).

    CAS  Google Scholar 

  123. 123.

    Kohnke, F. H., Mathias, J. P. & Stoddart, J. F. Substrate-directed synthesis: the rapid assembly of novel macropolycyclic structures via ttereoregular Diels–Alder oligomerization. In Top. Curr. Chem. (ed. Weber, E.) 1–69 (Springer Berlin Heidelberg, 1993).

  124. 124.

    Chen, H., Gui, S., Zhang, Y., Liu, Z. & Miao, Q. Synthesis of a hydrogenated zigzag carbon nanobelt. CCS Chem 2, 613–619 (2020).

    Google Scholar 

  125. 125.

    Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982).

    CAS  Google Scholar 

  126. 126.

    Binnig, G. & Rohrer, H. Scanning tunneling microscopy—from birth to adolescence (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 26, 606–614 (1987).

    Google Scholar 

  127. 127.

    Ruska, E. The development of the electron microscope and of electron microscopy (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 26, 595–706 (1987).

    Google Scholar 

  128. 128.

    Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    PubMed  Google Scholar 

  129. 129.

    Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    CAS  PubMed  Google Scholar 

  130. 130.

    Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    CAS  PubMed  Google Scholar 

  131. 131.

    Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    CAS  PubMed  Google Scholar 

  132. 132.

    Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    CAS  Google Scholar 

  133. 133.

    Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    CAS  PubMed  Google Scholar 

  134. 134.

    Frommer, J. Scanning tunneling microscopy and atomic force microscopy in organic chemistry. Angew. Chem. Int. Ed. Engl. 31, 1298–1328 (1992).

    Google Scholar 

  135. 135.

    Pavlicek, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 1, 0005 (2017).

    CAS  Google Scholar 

  136. 136.

    Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    CAS  PubMed  Google Scholar 

  137. 137.

    Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    CAS  PubMed  Google Scholar 

  138. 138.

    Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    CAS  PubMed  Google Scholar 

  139. 139.

    Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299–1301 (2019).

    CAS  PubMed  Google Scholar 

  140. 140.

    Pavlicek, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

    CAS  PubMed  Google Scholar 

  141. 141.

    Kruger, J. et al. Decacene: on-surface generation. Angew. Chem. Int. Ed. 56, 11945–11948 (2017).

    Google Scholar 

  142. 142.

    Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018).

    CAS  Google Scholar 

  143. 143.

    Timmerman, P., Verboom, W. & Reinhoudt, D. N. Resorcinarenes. Tetrahedron 52, 2663–2704 (1996).

    CAS  Google Scholar 

  144. 144.

    Purse, B. W., Shivanyuk, A. & Rebek, J. Resorcin[6]arene as a building block for tubular crystalline state architectures. Chem. Commun. 2002, 2612–2613 (2002).

  145. 145.

    Zhang, Y., Tong, S. & Wang, M. X. Synthesis and structure of functionalized zigzag hydrocarbon belts. Angew. Chem. Int. Ed. 59, 18151–18155 (2020).

    CAS  Google Scholar 

  146. 146.

    Nishigaki, S. et al. Synthesis of belt- and Möbius-shaped cycloparaphenylenes by rhodium-catalyzed alkyne cyclotrimerization. J. Am. Chem. Soc. 141, 14955–14960 (2019).

    CAS  PubMed  Google Scholar 

  147. 147.

    Nogami, J. et al. Enantioselective synthesis of planar chiral zigzag-type cyclophenylene belts by rhodium-catalyzed alkyne cyclotrimerization. J. Am. Chem. Soc. 142, 9834–9842 (2020).

    CAS  PubMed  Google Scholar 

  148. 148.

    Xie, J. et al. Heteroatom-bridged molecular belts as containers. Nat. Commun. 11, 3348 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149.

    Wang, J. & Miao, Q. A tetraazapentacene-pyrene belt: toward synthesis of N-doped zigzag carbon nanobelts. Org. Lett. 21, 10120–10124 (2019).

    CAS  PubMed  Google Scholar 

  150. 150.

    Tan, M. L. et al. Oxygen and nitrogen-embedded zigzag hydrocarbon belts. Angew. Chem. Int. Ed. 59, 23649–23658 (2020).

  151. 151.

    Kassaee, M. Z., Rad, A. H. & Amiri, S. S. Carbon–nitrogen nanorings and nanoribbons: a theoretical approach for altering the ground states of cyclacenes and polyacenes. Monatsh. Chem. 141, 1313–1319 (2010).

    CAS  Google Scholar 

  152. 152.

    Winkler, M. & Houk, K. N. Nitrogen-rich oligoacenes: candidates for n-channel organic semiconductors. J. Am. Chem. Soc. 129, 1805–1815 (2007).

    CAS  PubMed  Google Scholar 

  153. 153.

    Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. New n-type organic semiconductors: synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines. J. Am. Chem. Soc. 125, 13548–13558 (2003).

    CAS  PubMed  Google Scholar 

  154. 154.

    Wu, Y.-T. & Siegel, J. S. Synthesis, structures, and physical properties of aromatic molecular-bowl hydrocarbons. In Polyarenes I (eds Siegel, J. S. & Wu, Y.-T.) 63–120 (Springer Berlin Heidelberg, 2014).

  155. 155.

    Qiu, Y., Chen, H., Feng, Y., Schott, M. E. & Stoddart, J. F. Stitching up the belt[n]arenes. Chem 6, 826–829 (2020).

    CAS  Google Scholar 

  156. 156.

    Eisenhut, F. et al. Dodecacene generated on surface: reopening of the energy gap. ACS Nano 14, 1011–1017 (2020).

    CAS  PubMed  Google Scholar 

  157. 157.

    Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    CAS  PubMed  Google Scholar 

  158. 158.

    Haberhauer, G. & Hoffmann, R. Aromaticity and Other Conjugation Effects (Wiley, 2012).

  159. 159.

    Angus, J. R. O. & Johnson, R. P. Columnar homoconjugation. J. Org. Chem. 53, 314–317 (1988).

    CAS  Google Scholar 

  160. 160.

    Colwell, C. E., Price, T. W., Stauch, T. & Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 11, 3923–3930 (2020).

    CAS  Google Scholar 

  161. 161.

    Alder, R. W. & Sessions, R. B. Force field calculations on molecular belts built from cyclohexa-1,4-diene rings. J. Chem. Soc. Perkin Trans. 2, 1849–1854 (1985).

  162. 162.

    Peeks, M. D., Claridge, T. D. & Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 541, 200–203 (2017).

    CAS  PubMed  Google Scholar 

  163. 163.

    Rickhaus, M. et al. Global aromaticity at the nanoscale. Nat. Chem. 12, 236–241 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164.

    Türker, L. The effect of cyclization on acenes. J. Mol. Struct. THEOCHEM 531, 333–337 (2000).

    Google Scholar 

  165. 165.

    Türker, L. The possibility of superaromatic cyclacenes. Polycyclic Aromat. Compd. 4, 231–236 (1995).

    Google Scholar 

  166. 166.

    Türker, L. An approximate Hückel total π-electron energy formula for benzenoid aromatics. Polycyclic Aromat. Compd. 4, 107–114 (2006).

    Google Scholar 

  167. 167.

    André, J.-M., Champagne, B., Perpète, E. A. & Guillaume, M. Linear, cyclic, and Möbius strip polyacenes: the influence of the topology on the size-dependent HOMO–LUMO energy gap. Int. J. Quantum Chem. 84, 607–616 (2001).

    Google Scholar 

  168. 168.

    Türker, L. AM1 treatment of Hückel type cyclacenes. J. Mol. Struct. 407, 217–220 (1997).

    Google Scholar 

  169. 169.

    Guillaume, M., Champagne, B., Perpète, E. A. & André, J.-M. Möbius strip versus linear and cyclic polyacenes: a Hückel and semiempirical investigation. Theor. Chem. Acc. 105, 431–436 (2001).

    CAS  Google Scholar 

  170. 170.

    Türker, L. Zigzag cyclopolyacenes: a theoretical study. J. Mol. Struct. THEOCHEM 491, 275–280 (1999).

    Google Scholar 

  171. 171.

    Gutman, I., Biedermann, P. U., IvanovPetrović, V. & Agranat, I. Cyclic conjugation effects in cyclacenes. Polycyclic Aromat. Compd. 8, 189–202 (1996).

    Google Scholar 

  172. 172.

    Türker, L. Unusual alternation of HMO bond orders in cyclacenes. Polycyclic Aromat. Compd. 8, 67–71 (1996).

    Google Scholar 

  173. 173.

    Türker, L. MNDO treatment of the Hückel and Möbius types of cyclacenes. J. Mol. Struct. THEOCHEM 454, 83–86 (1998).

    Google Scholar 

  174. 174.

    Hückel, E. Quantentheoretische beiträge zum benzolproblem. Eur. Phys. J. A 70, 204–286 (1931).

    Google Scholar 

  175. 175.

    Baird, N. C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J. Am. Chem. Soc. 94, 4941–4948 (1972).

    CAS  Google Scholar 

  176. 176.

    Heilbronner, E. Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett. 5, 1923–1928 (1964).

    Google Scholar 

  177. 177.

    Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    CAS  PubMed  Google Scholar 

  178. 178.

    Liu, C., Ni, Y., Lu, X., Li, G. & Wu, J. Global aromaticity in macrocyclic polyradicaloids: Hückel’s rule or Baird’s rule? Acc. Chem. Res. 52, 2309–2321 (2019).

    CAS  PubMed  Google Scholar 

  179. 179.

    Chen, Z. & King, R. B. Spherical aromaticity: Recent work on fullerenes, polyhedral boranes, and related structures. Chem. Rev. 105, 3613–3642 (2005).

    CAS  PubMed  Google Scholar 

  180. 180.

    Kivelson, S. & Chapman, O. L. Polyacene and a new class of quasi-one-dimensional conductors. Phys. Rev. B 28, 7236–7243 (1983).

    CAS  Google Scholar 

  181. 181.

    Freixas, V. M., Oldani, N., Franklin-Mergarejo, R., Tretiak, S. & Fernandez-Alberti, S. Electronic energy relaxation in a photoexcited fully fused edge sharing carbon nanobelt. J. Phys. Chem. Lett. 11, 4711–4719 (2020).

    CAS  PubMed  Google Scholar 

  182. 182.

    Choi, H. S., Suh, S. B., Cho, S. J. & Kim, K. S. Ionophores and receptors using cation-π interactions: collarenes. Proc. Natl Acad. Sci. USA 95, 12094–12099 (1998).

    CAS  PubMed  Google Scholar 

  183. 183.

    Kyba, E. P. et al. Host–guest complexation. 1. Concept and illustration. J. Am. Chem. Soc. 99, 2564–2571 (1977).

    CAS  Google Scholar 

  184. 184.

    Cram, D. J. & Cram, J. M. Host-guest chemistry: complexes between organic compounds simulate the substrate selectivity of enzymes. Science 183, 803–809 (1974).

    CAS  PubMed  Google Scholar 

  185. 185.

    Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).

    Google Scholar 

  186. 186.

    Lehn, J. Cryptates: inclusion complexes of macropolycyclic receptor molecules. Pure Appl. Chem. 50, 871–892 (1979).

    Google Scholar 

  187. 187.

    Lehn, J.-M. Design of Organic Complexing Agents Strategies Towards Properties (Springer, 1973).

  188. 188.

    Lehn, J.-M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Google Scholar 

  189. 189.

    Haver, R. & Anderson, H. L. Synthesis and properties of porphyrin nanotubes. Helv. Chim. Acta 102, e1800211 (2019).

    Google Scholar 

  190. 190.

    Bols, P. S. & Anderson, H. L. Template-directed synthesis of molecular nanorings and cages. Acc. Chem. Res. 51, 2083–2092 (2018).

    CAS  PubMed  Google Scholar 

  191. 191.

    Sun, Z. et al. Finite phenine nanotubes with periodic vacancy defects. Science 363, 151–155 (2019).

    CAS  PubMed  Google Scholar 

  192. 192.

    Bunz, U. H., Menning, S. & Martin, N. para-Connected cyclophenylenes and hemispherical polyarenes: building blocks for single-walled carbon nanotubes? Angew. Chem. Int. Ed. 51, 7094–7101 (2012).

    CAS  Google Scholar 

  193. 193.

    Yu, X. et al. Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett. 10, 3343–3349 (2010).

    CAS  PubMed  Google Scholar 

  194. 194.

    Liu, B. et al. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett. 15, 586–595 (2015).

    CAS  PubMed  Google Scholar 

  195. 195.

    Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).

    CAS  PubMed  Google Scholar 

  196. 196.

    Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    CAS  PubMed  Google Scholar 

  197. 197.

    Scott, L. T. et al. A rational chemical synthesis of C60. Science 295, 1500–1503 (2002).

    CAS  PubMed  Google Scholar 

  198. 198.

    Koga, Y., Kaneda, T., Saito, Y., Murakami, K. & Itami, K. Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization. Science 359, 435–439 (2018).

    CAS  PubMed  Google Scholar 

  199. 199.

    Fort, E. H., Donovan, P. M. & Scott, L. T. Diels–Alder reactivity of polycyclic aromatic hydrocarbon bay regions: implications for metal-free growth of single-chirality carbon nanotubes. J. Am. Chem. Soc. 131, 16006–16007 (2009).

    CAS  PubMed  Google Scholar 

  200. 200.

    Butterfield, A. M., Gilomen, B. & Siegel, J. S. Kilogram-scale production of corannulene. Org. Process Res. Dev. 16, 664–676 (2012).

    CAS  Google Scholar 

  201. 201.

    Scott, L. T. Exotic chemistry and rational organic syntheses at 1000 °C. J. Org. Chem. 81, 11535–11547 (2016).

    CAS  PubMed  Google Scholar 

  202. 202.

    Golder, M. R., Zakharov, L. N. & Jasti, R. Stereochemical implications toward the total synthesis of aromatic belts. Pure Appl. Chem. 89, 1603–1617 (2017).

    CAS  Google Scholar 

  203. 203.

    Zhu, C., Kalin, A. J. & Fang, L. Covalent and noncovalent approaches to rigid coplanar π-conjugated molecules and macromolecules. Acc. Chem. Res. 52, 1089–1100 (2019).

    CAS  PubMed  Google Scholar 

  204. 204.

    Lee, J., Kalin, A. J., Yuan, T., Al-Hashimi, M. & Fang, L. Fully conjugated ladder polymers. Chem. Sci. 8, 2503–2521 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  205. 205.

    Teo, Y. C., Lai, H. W. H. & Xia, Y. Synthesis of ladder polymers: developments, challenges, and opportunities. Chem. Eur. J. 23, 14101–14112 (2017).

    CAS  PubMed  Google Scholar 

  206. 206.

    Scherf, U. & Müllen, K. The synthesis of ladder polymers. Adv. Polym. Sci. 123, 1–40 (1995).

    CAS  Google Scholar 

  207. 207.

    Scherf, U. Ladder-type materials. J. Mater. Chem. 9, 1853–1864 (1999).

    CAS  Google Scholar 

  208. 208.

    Grimsdale, A. C. & Müllen, K. Oligomers and polymers based on bridged phenylenes as electronic materials. Macromol. Rapid Commun. 28, 1676–1702 (2007).

    CAS  Google Scholar 

  209. 209.

    Blatter, K. & Schlüeter, A. D. Ribbon-shaped structures via repetitive Diels–Alder reaction. A polycatafusene. Macromolecules 22, 3506–3508 (1989).

    CAS  Google Scholar 

  210. 210.

    Schlüter, A. D. Ladder polymers: the new generation. Adv. Mater. 3, 282–291 (1991).

    Google Scholar 

  211. 211.

    Loffler, M., Enkelmann, V. & Schlüter, A. D. A Diels–Alder ladder polymer bridged by imino and ether groups. Acta Polymer 44, 50–53 (1993).

    Google Scholar 

  212. 212.

    Schlüter, A. D., Loffler, M. & Enkelmann, V. Synthesis of a fully unsaturated all-carbon ladder polymer. Nature 368, 831–834 (1994).

    Google Scholar 

  213. 213.

    Schlicke, B., Schirmer, H. & Schlüter, A. D. Unsaturated ladder polymers: structural variations and improved molecular weights. Adv. Mater. 7, 544–546 (1995).

    CAS  Google Scholar 

  214. 214.

    Scherf, U. & Müllen, K. Design and synthesis of extended π-systems: monomers, oligomers, polymers. Synthesis 1992, 23–38 (1992).

  215. 215.

    Wegener, S. & Müllen, K. New ladder polymers via repetitive Diels–Alder reaction under high-pressure. Macromolecules 26, 3037–3040 (1993).

    CAS  Google Scholar 

  216. 216.

    Pollmann, M. & Müllen, K. Semiflexible ribbon-type structures via repetitive Diels–Alder cycloaddition. Cage formation versus polymerization. J. Am. Chem. Soc. 116, 2318–2323 (1994).

    CAS  Google Scholar 

  217. 217.

    Horn, T., Wegener, S. & Müllen, K. Poly[n]acene precursors via repetitive Diels–Alder reactions with dehydrobenzenes. Macromol. Chem. Phys. 196, 2463–2474 (1995).

    CAS  Google Scholar 

  218. 218.

    Thomas, S. W. I. et al. Perpendicular organization of macromolecules: synthesis and alignment studies of a soluble poly(iptycene). J. Am. Chem. Soc. 127, 17976–17977 (2005).

    CAS  PubMed  Google Scholar 

  219. 219.

    Chen, Z. H., Amara, J. P., Thomas, S. W. I. & Swager, T. M. Synthesis of a novel poly(iptycene) ladder polymer. Macromolecules 39, 3202–3209 (2006).

    CAS  Google Scholar 

  220. 220.

    Perepichka, D. F., Bendikov, M., Meng, H. & Wudl, F. A one-step synthesis of a poly(iptycene) through an unusual Diels–Alder cyclization/dechlorination of tetrachloropentacene. J. Am. Chem. Soc. 125, 10190–10191 (2003).

    CAS  PubMed  Google Scholar 

  221. 221.

    Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    CAS  PubMed  Google Scholar 

  222. 222.

    Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    CAS  PubMed  Google Scholar 

  223. 223.

    Talirz, L. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 11, 1380–1388 (2017).

    CAS  PubMed  Google Scholar 

  224. 224.

    Sakaguchi, H., Song, S., Kojima, T. & Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9, 57–63 (2017).

    CAS  PubMed  Google Scholar 

  225. 225.

    Jordan, R. S. et al. Synthesis of N = 8 armchair graphene nanoribbons from four distinct polydiacetylenes. J. Am. Chem. Soc. 139, 15878–15890 (2017).

    CAS  PubMed  Google Scholar 

  226. 226.

    Matsui, K., Segawa, Y., Namikawa, T., Kamada, K. & Itami, K. Synthesis and properties of all-benzene carbon nanocages: a junction unit of branched carbon nanotubes. Chem. Sci. 4, 84–88 (2013).

    CAS  Google Scholar 

  227. 227.

    Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  228. 228.

    Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).

    CAS  PubMed  Google Scholar 

  229. 229.

    Fan, Y. Y. et al. An isolable catenane consisting of two Möbius conjugated nanohoops. Nat. Commun. 9, 3037 (2018).

    PubMed  PubMed Central  Google Scholar 

  230. 230.

    Van Raden, J. M., Jarenwattananon, N. N., Zakharov, L. N. & Jasti, R. Active metal template synthesis and characterization of a nanohoop [c2]daisy chain rotaxane. Chem. Eur. J. 26, 10205–10209 (2020).

    PubMed  Google Scholar 

Download references

Acknowledgements

This Review is dedicated to the memory of François Diederich. We thank K. Itami for giving us advanced access to an article describing the ‘Synthesis of a zigzag carbon nanobelt’. We also thank C. Chi and Y. Han for their helpful comments on our section describing ‘The synthesis of an octabenzo[12]cyclacene’. Q.-H.G., Y.Q. and J.F.S. thank Northwestern University for financial support. M.-X.W. thanks the National Natural Science Foundation of China (22050005) for financial support.

Author information

Affiliations

Authors

Contributions

Q.-H.G. came up with the proposal to write the Review and wrote the first draft. M.-X.W. and J.F.S. oversaw the preparation of the manuscript. Y.Q. contributed the writing of the outlook. All authors contributed to discussions and wrote the manuscript.

Corresponding authors

Correspondence to Mei-Xiang Wang or J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, QH., Qiu, Y., Wang, MX. et al. Aromatic hydrocarbon belts. Nat. Chem. 13, 402–419 (2021). https://doi.org/10.1038/s41557-021-00671-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing