Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Aromatic hydrocarbon belts

Abstract

Aromatic hydrocarbon belts (AHCBs) have fascinated scientists for over half a century because of their aesthetically appealing structures and potential applications in the field of carbon nanotechnology. One of the enduring challenges in synthesizing AHCBs is how do we cope with the build-up of energy in the highly strained structures during their synthesis? Successful preparations of AHCBs offer the prospect of providing well-defined templates for the growth of uniform single-walled carbon nanotubes—a long-standing interest in nanocarbon science. In this Review, we revisit the protracted historical background involving the rational design and synthesis of AHCBs and highlight some of the more recent breakthroughs, with emphasis being placed on the different strategies that have been used for building up curved and fused benzenoid rings into molecular belts. We also discuss the scientific challenges in this fledgling field and provide some pointers as to what could transpire in years to come.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: History and structural formulae of aromatic hydrocarbon belts.
Fig. 2: Top-down syntheses of cyclophenacenes and Vögtle belts from fullerenes.
Fig. 3: Syntheses of carbon nanobelts.
Fig. 4: Substrate-directed syntheses of cyclacenes.
Fig. 5: On-surfaces syntheses of cyclacenes36.
Fig. 6: Synthesis of beltarenes from resorcinarenes by stitching-up-fjords strategy.
Fig. 7: The synthesis of a zigzag carbon nanobelt96.
Fig. 8: The synthesis of an octabenzo[12]cyclacene97.
Fig. 9: Structural traits of AHCBs and proposed bottom-up syntheses of uniform CNTs, ladder oligomers and large fullerenes.

Similar content being viewed by others

References

  1. Diederich, F. et al. All-carbon molecules: Evidence for the generation of cyclo[18]carbon from a stable organic precursor. Science 245, 1088–1090 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Stoddart, J. F. All-carbon compounds. Towards the cyclo[n]carbons. Nature 342, 482–483 (1989).

    Article  Google Scholar 

  3. Stoddart, J. F. The third allotropic form of carbon. Angew. Chem. Int. Ed. Engl. 30, 70–71 (1991).

    Article  Google Scholar 

  4. Petrukhina, M. A. & Scott, L. T. Fragments of Fullerenes and Carbon Nanotubes (Wiley, 2011).

  5. Siegel, J. S. Allotropy by design–Carbon nanohoops. Science 356, 135–136 (2017).

    Article  CAS  PubMed  Google Scholar 

  6. Kroto, H. W., Heath, J. R., O’Brien, S. C., Curl, R. F. & Smalley, R. E. C60: Buckminsterfullerene. Nature 318, 162–163 (1985).

    Article  CAS  Google Scholar 

  7. Smalley, R. E. Discovering the fullerenes (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 36, 1594–1601 (1997).

    Article  Google Scholar 

  8. Kroto, H. Symmetry, space, stars, and C60 (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 36, 1578–1593 (1997).

    Article  Google Scholar 

  9. Curl, R. F. Dawn of the fullerenes: conjecture and experiment (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 36, 1566–1576 (1997).

    Article  Google Scholar 

  10. Iijima, S. Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991).

    Article  CAS  Google Scholar 

  11. Heilbronner, E. Molecular orbitals in homologen reihen mehrkerniger aromatischer kohlenwasserstoffe: I. Die eigenwerte von LCAO-MO’s in homologen reihen. Helv. Chim. Acta 37, 921–935 (1954).

    Article  CAS  Google Scholar 

  12. Vögtle, F. Cyclophanes II. Concluding remarks. Top. Curr.Chem. 115, 157–159 (1983).

    Google Scholar 

  13. Kohnke, F. H., Slawin, A. M. Z., Stoddart, J. F. & Williams, D. J. Molecular belts and collars in the making: A hexaepoxyoctacosahydro[12]cyclacene derivative. Angew. Chem. Int. Ed. Engl. 26, 892–894 (1987).

    Article  Google Scholar 

  14. Ashton, P. R. et al. Towards the making of [12]collarene. Angew. Chem. Int. Ed. Engl. 27, 966–969 (1988).

    Article  Google Scholar 

  15. Cory, R. M., McPhail, C. L., Dikmans, A. J. & Vittal, J. J. Macrocyclic cyclophane belts via double Diels–Alder cycloadditions: Macroannulation of bisdienes by bisdienophiles. Synthesis of a key precursor to an [8]cyclacene. Tetrahedron Lett. 37, 1983–1986 (1996).

    Article  CAS  Google Scholar 

  16. Cory, R. M. & McPhail, C. L. Transformations of a macrocyclic cyclophane belt into advanced [8]cyclacene and [8]cyclacene triquinone precursors. Tetrahedron Lett. 37, 1987–1990 (1996).

    Article  CAS  Google Scholar 

  17. Godt, A., Enkelmann, V. & Schlüter, A. D. Double-stranded molecules: a [6]beltene derivative and the corresponding open-chain polymer. Angew. Chem. Int. Ed. Engl. 28, 1680–1682 (1989).

    Article  Google Scholar 

  18. Kintzel, O., Luger, P., Weber, M. & Schlüter, A. D. Ring-chain equilibrium between an [18]cyclacene derivative and a ladder oligomer. Eur. J. Org. Chem. 1998, 99–105 (1998).

    Article  Google Scholar 

  19. Jasti, R., Bhattacharjee, J., Neaton, J. B. & Bertozzi, C. R. Synthesis, characterization, and theory of [9]-, [12]-, and [18]cycloparaphenylene: Carbon nanohoop structures. J. Am. Chem. Soc. 130, 17646–17647 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis of a carbon nanobelt. Science 356, 172–175 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Cheung, K. Y. et al. Synthesis of armchair and chiral carbon nanobelts. Chem 5, 838–847 (2019).

    Article  CAS  Google Scholar 

  22. Shi, T.-H., Guo, Q.-H., Tong, S. & Wang, M.-X. Toward the synthesis of a highly strained hydrocarbon belt. J. Am. Chem. Soc. 142, 4576–4580 (2020).

    Article  CAS  PubMed  Google Scholar 

  23. Sisto, T. J., Zakharov, L. N., White, B. M. & Jasti, R. Towards π-extended cycloparaphenylenes as seeds for CNT growth: investigating strain relieving ring-openings and rearrangements. Chem. Sci. 7, 3681–3688 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Segawa, Y., Ito, H. & Itami, K. Structurally uniform and atomically precise carbon nanostructures. Nat. Rev. Mater 1, 15002 (2016).

    Article  CAS  Google Scholar 

  25. Saito, R., Fujita, M., Dresselhaus, G. & Dresselhaus, M. S. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 60, 2204–2206 (1992).

    Article  CAS  Google Scholar 

  26. Liu, B., Wu, F., Gui, H., Zheng, M. & Zhou, C. Chirality-controlled synthesis and applications of single-wall carbon nanotubes. ACS Nano 11, 31–53 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Harris, P. J. F. Carbon Nanotubes and Related Structures: New Materials for the Twenty-First Century (Cambridge Univ. Press, 2003).

  28. Dresselhaus, M. S., Dresselhaus, G. & Avouris, P. Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, 2001).

  29. Shi, T.-H., Tong, S. & Wang, M.-X. Construction of hydrocarbon nanobelts. Angew. Chem. Int. Ed. 59, 7700–7705 (2020).

    Article  CAS  Google Scholar 

  30. Xia, Z., Pun, S. H., Chen, H. & Miao, Q. Synthesis of zigzag carbon nanobelts through Scholl reactions. Angew. Chem. Int. Ed. https://doi.org/10.1002/ange.202100343 (2021).

  31. Nakamura, E., Tahara, K., Matsuo, Y. & Sawamura, M. Synthesis, structure, and aromaticity of a hoop-shaped cyclic benzenoid [10]cyclophenacene. J. Am. Chem. Soc. 125, 2834–2835 (2003).

    Article  CAS  PubMed  Google Scholar 

  32. Matsuo, Y., Tahara, K., Sawamura, M. & Nakamura, E. Creation of hoop- and bowl-shaped benzenoid systems by selective detraction of [60]fullerene conjugation. [10]Cyclophenacene and fused corannulene derivatives. J. Am. Chem. Soc. 126, 8725–8734 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Matsuo, Y., Tahara, K. & Nakamura, E. Synthesis and electrochemistry of double-decker buckyferrocenes. J. Am. Chem. Soc. 128, 7154–7155 (2006).

    Article  CAS  PubMed  Google Scholar 

  34. Matsuo, Y., Tahara, K., Morita, K., Matsuo, K. & Nakamura, E. Regioselective eightfold and tenfold additions of a pyridine-modified organocopper reagent to [60]fullerene. Angew. Chem. Int. Ed. 46, 2844–2847 (2007).

    Article  CAS  Google Scholar 

  35. Li, Y., Xu, D. & Gan, L. Selective multiamination of C70 leading to curved π systems with 60, 58, 56, and 50 π electrons. Angew. Chem. Int. Ed. 55, 2483–2487 (2016).

    Article  CAS  Google Scholar 

  36. Schulz, F. et al. Exploring a route to cyclic acenes by on-surface synthesis. Angew. Chem. Int. Ed. 58, 9038–9042 (2019).

    Article  CAS  Google Scholar 

  37. Povie, G., Segawa, Y., Nishihara, T., Miyauchi, Y. & Itami, K. Synthesis and size-dependent properties of [12], [16], and [24]carbon nanobelts. J. Am. Chem. Soc. 140, 10054–10059 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Cory, R. M. & McPhail, C. L.Fascinating Stops on the Way to Cyclacenes and Cyclacene Quinones: A tour guide to synthetic progress to date. In Advances in Theoretically Interesting Molecules Vol. 4 (ed. Thummel, R. P.) 53–80 (JAI Press, 1998).

  39. Iyoda, M., Kuwatani, Y., Nishinaga, T., Takase, M. & Nishiuchi, T. Conjugated molecular belts based on 3D benzannulene systems. In Fragments of Fullerenes and Carbon Nanotubes (eds Petrukhina, M. A. & Scott, L. T.) 311–342 (2011).

  40. Tahara, K. & Tobe, Y. Molecular loops and belts. Chem. Rev. 106, 5274–5290 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Eisenberg, D., Shenhar, R. & Rabinovitz, M. Synthetic approaches to aromatic belts: building up strain in macrocyclic polyarenes. Chem. Soc. Rev. 39, 2879–2890 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Segawa, Y., Yagi, A., Matsui, K. & Itami, K. Design and synthesis of carbon nanotube segments. Angew. Chem. Int. Ed. 55, 5136–5158 (2016).

    Article  CAS  Google Scholar 

  43. Yao, T., Yu, H., Vermeij, R. J. & Bodwell, G. J. Nonplanar aromatic compounds. Part 10: a strategy for the synthesis of aromatic belts—all wrapped up or down the tubes? Pure Appl. Chem. 80, 533–546 (2008).

    Article  CAS  Google Scholar 

  44. Türker, L. & Gümüş, S. Cyclacenes. J. Mol. Struct. THEOCHEM 685, 1–33 (2004).

    Article  Google Scholar 

  45. Gleiter, R., Esser, B. & Kornmayer, S. C. Cyclacenes: Hoop-shaped systems composed of conjugated rings. Acc. Chem. Res. 42, 1108–1116 (2009).

    Article  CAS  PubMed  Google Scholar 

  46. Shi, T.-H. & Wang, M.-X. Zigzag hydrocarbon belts. CCS Chem 2, 916–931 (2020).

    Google Scholar 

  47. Cheung, K. Y., Segawa, Y. & Itami, K. Synthetic strategies of carbon nanobelts and related belt-shaped polycyclic aromatic hydrocarbons. Chem. Eur. J. 26, 14791–14801 (2020).

  48. Chen, H. & Miao, Q. Recent advances and attempts in synthesis of conjugated nanobelts. J. Phys. Org. Chem. 33, e4145 (2020).

  49. Hermann, M., Wassy, D. & Esser, B. Conjugated nanohoops incorporating donor-, acceptor-, hetero- or polycyclic aromatics. Angew. Chem. Int. Ed. https://doi.org/10.1002/anie.202007024 (2021).

  50. Scott, L. T. Conjugated belts and nanorings with radially oriented p orbitals. Angew. Chem. Int. Ed. 42, 4133–4135 (2003).

    Article  CAS  Google Scholar 

  51. Segawa, Y., Yagi, A., Ito, H. & Itami, K. A theoretical study on the strain energy of carbon nanobelts. Org. Lett. 18, 1430–1433 (2016).

    Article  CAS  PubMed  Google Scholar 

  52. Golder, M. R. & Jasti, R. Syntheses of the smallest carbon nanohoops and the emergence of unique physical phenomena. Acc. Chem. Res. 48, 557–566 (2015).

    Article  CAS  PubMed  Google Scholar 

  53. Hitosugi, S., Nakanishi, W., Yamasaki, T. & Isobe, H. Bottom-up synthesis of finite models of helical (n,m)-single-wall carbon nanotubes. Nat. Commun. 2, 492 (2011).

    Article  Google Scholar 

  54. Iwamoto, T., Kayahara, E., Yasuda, N., Suzuki, T. & Yamago, S. Synthesis, characterization, and properties of [4]cyclo-2,7-pyrenylene: Effects of cyclic structure on the electronic properties of pyrene oligomers. Angew. Chem. Int. Ed. 53, 6430–6434 (2014).

    Article  CAS  Google Scholar 

  55. Huang, Q. et al. Photoconductive curved-nanographene/fullerene supramolecular heterojunctions. Angew. Chem. Int. Ed. 58, 6244–6249 (2019).

    Article  CAS  Google Scholar 

  56. Herges, R. Fully Conjugated beltenes (belt-like and tubular aromatics). In Modern Cyclophane Chemistry (eds Gleiter, R. & Hopf, H.) 337–358 (2005).

  57. Kawase, T., Darabi, H. R. & Oda, M. Cyclic [6]- and [8]paraphenylacetylenes. Angew. Chem. Int. Ed. Engl. 35, 2664–2666 (1996).

    Article  CAS  Google Scholar 

  58. Kawase, T., Tanaka, K., Shiono, N., Seirai, Y. & Oda, M. Onion-type complexation based on carbon nanorings and a buckminsterfullerene. Angew. Chem. Int. Ed. 43, 1722–1724 (2004).

    Article  CAS  Google Scholar 

  59. Segawa, Y., Levine, D. R. & Itami, K. Topologically unique molecular nanocarbons. Acc. Chem. Res. 52, 2760–2767 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Choi, H. S. & Kim, K. S. Structures, magnetic properties, and aromaticity of cyclacenes. Angew. Chem. Int. Ed. 38, 2256–2258 (1999).

    Article  CAS  Google Scholar 

  61. Chen, Z. et al. Open-shell singlet character of cyclacenes and short zigzag nanotubes. Org. Lett. 9, 5449–5452 (2007).

    Article  CAS  PubMed  Google Scholar 

  62. Clar, E. The Aromatic Sextet (Wiley, 1972).

  63. Clar, E. Polycyclic Hydrocarbons. (Academic Press, 1964).

  64. Deichmann, M., Nather, C. & Herges, R. Pyrolysis of a tubular aromatic compound. Org. Lett. 5, 1269–1271 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Schaller., G. R. & Herges, R. Aromatic belts as sections of nanotubes. In Fragments of Fullerenes and Carbon Nanotubes (eds Petrukhina, M. A. & Scott, L. T.) 259–289 (2011).

  66. Vögtle, F., Schröder, A. & Karbach, D. Strategy for the synthesis of tube-shaped molecules. Angew. Chem. Int. Ed. Engl. 30, 575–577 (1991).

    Article  Google Scholar 

  67. Golling, F. E., Quernheim, M., Wagner, M., Nishiuchi, T. & Müllen, K. Concise synthesis of 3D π-extended polyphenylene cylinders. Angew. Chem. Int. Ed. 53, 1525–1528 (2014).

    Article  CAS  Google Scholar 

  68. Yagi, A., Segawa, Y. & Itami, K. Armchair and chiral carbon nanobelts: Scholl reaction in strained nanorings. Chem 5, 746–748 (2019).

    Article  CAS  Google Scholar 

  69. Sekiguchi, R. et al. Preparation of a cyclic polyphenylene array for a zigzag-type carbon nanotube segment. J. Org. Chem. 80, 5092–5110 (2015).

    Article  CAS  PubMed  Google Scholar 

  70. Korich, A. L., McBee, I. A., Bennion, J. C., Gifford, J. I. & Hughes, T. S. Synthesis and photophysical properties of biphenyl and terphenyl arylene−ethynylene macrocycles. J. Org. Chem. 79, 1594–1610 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Merner, B. L., Dawe, L. N. & Bodwell, G. J. 1,1,8,8-Tetramethyl[8](2,11)teropyrenophane: half of an aromatic belt and a segment of an (8,8) single-walled carbon nanotube. Angew. Chem. Int. Ed. 48, 5487–5491 (2009).

    Article  CAS  Google Scholar 

  72. Stoddart, J. F. Unnatural product synthesis. Nature 334, 10–11 (1988).

    Article  Google Scholar 

  73. Myśliwiec, D. & Stępień, M. The fold-in approach to bowl-shaped aromatic compounds: Synthesis of chrysaoroles. Angew. Chem. Int. Ed. 52, 1713–1717 (2013).

    Article  Google Scholar 

  74. Yang, Y., Yuan, L., Shan, B., Liu, Z. & Miao, Q. Twisted polycyclic arenes from tetranaphthyldiphenylbenzenes by controlling the Scholl reaction with substituents. Chem. Eur. J. 22, 18620–18627 (2016).

    Article  CAS  PubMed  Google Scholar 

  75. Pedersen, C. J. Cyclic polyethers and their complexes with metal salts. J. Am. Chem. Soc. 89, 7017–7036 (1967).

    Article  CAS  Google Scholar 

  76. Pedersen, C. J. The discovery of crown ethers (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 1021–1027 (1988).

    Article  Google Scholar 

  77. Gutsche, C. D., Dhawan, B., No, K. H. & Muthukrishnan, R. Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J. Am. Chem. Soc. 103, 3782–3792 (1981).

    Article  CAS  Google Scholar 

  78. Gutsche, C. D. Calixarenes. Acc. Chem. Res. 16, 161–170 (1983).

    Article  CAS  Google Scholar 

  79. Freeman, W. A., Mock, W. L. & Shih, N. Y. Cucurbituril. J. Am. Chem. Soc. 103, 7367–7368 (1981).

    Article  CAS  Google Scholar 

  80. Lagona, J., Mukhopadhyay, P., Chakrabarti, S. & Isaacs, L. The cucurbit[n]uril family. Angew. Chem. Int. Ed. 44, 4844–4870 (2005).

    Article  CAS  Google Scholar 

  81. Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. A. & Nakamoto, Y. para-Bridged symmetrical pillar[5]arenes: their Lewis acid catalyzed synthesis and host–guest property. J. Am. Chem. Soc. 130, 5022–5023 (2008).

    Article  CAS  PubMed  Google Scholar 

  82. Guo, Q.-H., Fu, Z.-D., Zhao, L. & Wang, M.-X. Synthesis, structure, and properties of O6-Corona[3]arene[3]tetrazines. Angew. Chem. Int. Ed. 53, 13548–13552 (2014).

    Article  CAS  Google Scholar 

  83. Wang, M.-X. Coronarenes: Recent advances and perspectives on macrocyclic and supramolecular chemistry. Sci. China Chem. 61, 993–1003 (2018).

    Article  CAS  Google Scholar 

  84. San-Fabián, E., Pérez-Guardiola, A., Moral, M., Pérez-Jiménez, A. J. & Sancho-García, J. C. Theoretical study of strained carbon-based nanobelts: structural, energetic, electronic, and magnetic properties of [n]cyclacenes. In Advanced Magnetic and Optical Materials (eds Tiwari, A., Iyer, P. K., Kumar, V., & Swart, H.) 165–183 (Scrivener, 2016).

  85. Houk, K. N., Lee, P. S. & Nendel, M. Polyacene and cyclacene geometries and electronic structures: bond equalization, vanishing band gaps, and triplet ground states contrast with polyacetylene. J. Org. Chem. 66, 5517–5521 (2001).

    Article  CAS  PubMed  Google Scholar 

  86. Battaglia, S. et al. A theoretical study on cyclacenes: analytical tight-binding approach. Int. J. Quantum Chem. 118, e25569 (2018).

    Article  Google Scholar 

  87. Sadowsky, D., McNeill, K. & Cramer, C. J. Electronic structures of [n]-cyclacenes (n = 6–12) and short, hydrogen-capped, carbon nanotubes. Faraday Discuss. 145, 507–521 (2010).

    Article  CAS  Google Scholar 

  88. Wu, C. S., Lee, P. Y. & Chai, J. D. Electronic properties of cyclacenes from TAO-DFT. Sci. Rep. 6, 37249 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Battaglia, S., Faginas-Lago, N., Andrae, D., Evangelisti, S. & Leininger, T. Increasing radical character of large [n]cyclacenes unveiled by wave function theory. J. Phys. Chem. A 121, 3746–3756 (2017).

    Article  CAS  PubMed  Google Scholar 

  90. Türker, L. Cryptoannulenic behavior of cyclacenes. Polycyclic Aromat. Compd. 4, 191–197 (1994).

    Article  Google Scholar 

  91. Loh, K. P., Yang, S. W., Soon, J. M., Zhang, H. & Wu, P. Ab initio studies of borazine and benzene cyclacenes and their fluoro-substituted derivatives. J. Phys. Chem. A 107, 5555–5560 (2003).

    Article  CAS  Google Scholar 

  92. Li, Q., Xu, H.-L. & Su, Z.-M. NICS values scan in three-dimensional space of the hoop-shaped π-conjugated molecules [6]8cyclacene and [16]trannulene. New J. Chem. 42, 1987–1994 (2018).

    Article  CAS  Google Scholar 

  93. Diels, O. & Alder, K. Synthesen in der hydroaromatischen reihe. Justus Liebigs Ann. Chem 460, 98–122 (1928).

    Article  CAS  Google Scholar 

  94. Standera, M. & Schlüter, D. Toward fully unsaturated double-stranded cycles. In Fragments of Fullerenes and Carbon Nanotubes (eds Petrukhina, M. A. & Scott, L. T.) 343–366 (2011).

  95. Matsui, K., Fushimi, M., Segawa, Y. & Itami, K. Synthesis, structure, and reactivity of a cylinder-shaped cyclo[12]orthophenylene[6]ethynylene: toward the synthesis of zigzag carbon nanobelts. Org. Lett. 18, 5352–5355 (2016).

    Article  CAS  PubMed  Google Scholar 

  96. Cheung, K. Y., Watanabe, K., Segawa, Y. & Itami, K. Synthesis of a zigzag carbon nanobelt. Nat. Chem. 13, 255–259 (2021).

  97. Han, Y., Dong, S., Shao, J., Fan, W. & Chi, C. Synthesis of a sidewall fragment of a (12,0) carbon nanotube. Angew. Chem. Int. Ed. 60, 2658–2662 (2021).

  98. Elmosalamy, M. A. F., Moody, G. J., Thomas, J. D. R., Kohnke, F. A. & Stoddart, J. F. Studies on two epoxyoctacosahydro[12]cyclacene derivatives as sensor coatings on quartz piezoelectric crystals for detecting aromatic vapours. Anal. Proc. 26, 12–15 (1989).

    CAS  Google Scholar 

  99. Ashton, P. R., Isaacs, N. S., Kohnke, F. H., Mathias, J. P. & Stoddart, J. F. Stereoregular oligomerization by repetitive Diels–Alder reactions. Angew. Chem. Int. Ed. Engl. 28, 1258–1261 (1989).

    Article  Google Scholar 

  100. Ashton, P. R., Isaacs, N. S., Kohnke, F. H., D’Alcontres, G. S. & Stoddart, J. F. Trinacrene–a product of structure-directed synthesis. Angew. Chem. Int. Ed. Engl. 28, 1261–1263 (1989).

    Article  Google Scholar 

  101. Ashton, P. R. et al. Molecular LEGO. 1. Substrate-directed synthesis via stereoregular Diels–Alder oligomerizations. J. Am. Chem. Soc. 114, 6330–6353 (1992).

    Article  CAS  Google Scholar 

  102. Raymo, F., Kohnke, F. H. & Cardullo, F. The regioselective generation of arynes from polyhalogenobenzenes. An improved synthesis of syn- and anti-1,4,5,8,9,12-hexahydro-1,4:5,8:9,12-triepoxytriphenylene. Tetrahedron 48, 6827–6838 (1992).

    Article  CAS  Google Scholar 

  103. Ashton, P. R., Mathias, J. P. & Stoddart, J. F. The oligoselective syntheses of polyacene derivatives. Synthesis 1993, 221–224 (1993).

  104. Ashton, P. R. et al. Molecular belts. 2. Substrate-directed syntheses of belt-type and cage-type structures. J. Am. Chem. Soc. 115, 5422–5429 (1993).

    Article  CAS  Google Scholar 

  105. Kohnke, F. H. & Stoddart, J. F. The evolution of molecular belts and collars. Pure Appl. Chem. 61, 1581–1586 (1989).

    Article  CAS  Google Scholar 

  106. Kohnke, F. H., Mathias, J. P. & Stoddart, J. F. Structure-directed synthesis of new organic materials. Angew. Chem. Int. Ed. Engl. 28, 1103–1110 (1989).

    Article  Google Scholar 

  107. Ellwood, P., Mathias, J. P., Stoddart, J. F. & Kohnke, F. H. Stereoelectronically-programmed molecular ‘LEGO’ sets. Bull. Soc. Chem. Belg. 97, 669–678 (1988).

    Article  CAS  Google Scholar 

  108. Antonsson, T. & Vogel, P. Regioselectivity of 7-oxabicyclo[2.2.1]hepta-2,5-diene-phenol rearrangement as a function of the acid promoter. Stereoselective synthesis of 1,2,3,4-tetrahydro-2-hydroxynaphthalen-2-yl methyl ketones. Tetrahedron Lett. 31, 89–92 (1990).

    Article  CAS  Google Scholar 

  109. Tornare, J. M. & Vogel, P. The synthesis of (±)‐11‐deoxydaunomycinone via regioselective tandem Diels–Alder reactions. Helv. Chim. Acta 68, 1069–1077 (1985).

    Article  CAS  Google Scholar 

  110. Pinkerton, A. A., Schwarzenbach, D., Stibbard, J. H., Carrupt, P. A. & Vogel, P. Nonplanarity of π systems in 5,6-bis(methylene)-7-oxanorborn-2-ene. J. Am. Chem. Soc. 103, 2095–2096 (1981).

    Article  CAS  Google Scholar 

  111. Tornare, J. M., Vogel, P., Pinkerton, A. A. & Schwarzenbach, D. Face selectivity of the Diels–Alder additions of sulfur-substituted dienes and tetraenes grafted onto 7-oxabicyclo[2.2.1]heptanes. Helv. Chim. Acta 68, 2195–2215 (1985).

    Article  CAS  Google Scholar 

  112. Brown, F. K. & Houk, K. N. Torsional and steric control of stereoselectivity in isodicyclopentadiene cycloadditions. J. Am. Chem. Soc. 107, 1971–1978 (1985).

    Article  CAS  Google Scholar 

  113. Harada, T., Takeuchi, M., Hatsuda, M., Ueda, S. & Oku, A. Effects of torsional angles of 2,2′-biaryldiol ligands in asymmetric Diels–Alder reactions of acrylates catalyzed by their titanium complexes. Tetrahedron Asymmetry 7, 2479–2482 (1996).

    Article  CAS  Google Scholar 

  114. Iafe, R. G. & Houk, K. N. Stereoselectivity control by torsional steering in an intramolecular Diels–Alder reaction of vinyl oxocarbenium ions. Org. Lett. 8, 3469–3472 (2006).

    Article  CAS  PubMed  Google Scholar 

  115. Alston, P. V., Ottenbrite, R. M. & Cohen, T. Secondary orbital interactions determining regioselectivity in the Diels–Alder reaction. 3. Disubstituted dienes. J. Org. Chem. 43, 1864–1867 (1978).

    Article  CAS  Google Scholar 

  116. Wannere, C. S. et al. The existence of secondary orbital interactions. J. Comput. Chem. 28, 344–361 (2007).

    Article  CAS  PubMed  Google Scholar 

  117. Levandowski, B. J., Svatunek, D., Sohr, B., Mikula, H. & Houk, K. N. Secondary orbital interactions enhance the reactivity of alkynes in Diels–Alder cycloadditions. J. Am. Chem. Soc. 141, 2224–2227 (2019).

    Article  CAS  PubMed  Google Scholar 

  118. Stoddart, J. F. Molecular LEGO. Chem. Br. 24, 1203–1208 (1988).

    CAS  Google Scholar 

  119. Stoddart, J. F. The making of molecular belts and collars. J. Inclusion Phenom. Mol. Recognit. Chem. 7, 227–245 (1989).

    Article  CAS  Google Scholar 

  120. Kohnke, F. H., Mathias, J. P. & Stoddart, J. F. Structure-directed synthesis of unnatural products. In Proceedings of the International Symposium on Chemical and Biochemical Problems in Molecular Recognition, Exeter (ed. Roberts, S. M.) 241–269 (Royal Society of Chemistry, 1989).

  121. Mathias, J. P. & Stoddart, J. F. Constructing a molecular LEGO set. Chem. Soc. Rev. 21, 215–225 (1992).

    Article  CAS  Google Scholar 

  122. Girreser, U. et al. The structure-directed synthesis of cyclacene and polyacene derivatives. Pure Appl. Chem. 65, 119–125 (1993).

    Article  CAS  Google Scholar 

  123. Kohnke, F. H., Mathias, J. P. & Stoddart, J. F. Substrate-directed synthesis: the rapid assembly of novel macropolycyclic structures via ttereoregular Diels–Alder oligomerization. In Top. Curr. Chem. (ed. Weber, E.) 1–69 (Springer Berlin Heidelberg, 1993).

  124. Chen, H., Gui, S., Zhang, Y., Liu, Z. & Miao, Q. Synthesis of a hydrogenated zigzag carbon nanobelt. CCS Chem 2, 613–619 (2020).

    Google Scholar 

  125. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982).

    Article  CAS  Google Scholar 

  126. Binnig, G. & Rohrer, H. Scanning tunneling microscopy—from birth to adolescence (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 26, 606–614 (1987).

    Article  Google Scholar 

  127. Ruska, E. The development of the electron microscope and of electron microscopy (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 26, 595–706 (1987).

    Article  Google Scholar 

  128. Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, C. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  PubMed  Google Scholar 

  129. Repp, J., Meyer, G., Paavilainen, S., Olsson, F. E. & Persson, M. Imaging bond formation between a gold atom and pentacene on an insulating surface. Science 312, 1196–1199 (2006).

    Article  CAS  PubMed  Google Scholar 

  130. Binnig, G., Quate, C. F. & Gerber, C. Atomic force microscope. Phys. Rev. Lett. 56, 930–933 (1986).

    Article  CAS  PubMed  Google Scholar 

  131. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  132. Eigler, D. M. & Schweizer, E. K. Positioning single atoms with a scanning tunneling microscope. Nature 344, 524–526 (1990).

    Article  CAS  Google Scholar 

  133. Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    Article  CAS  PubMed  Google Scholar 

  134. Frommer, J. Scanning tunneling microscopy and atomic force microscopy in organic chemistry. Angew. Chem. Int. Ed. Engl. 31, 1298–1328 (1992).

    Article  Google Scholar 

  135. Pavlicek, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 1, 0005 (2017).

    Article  CAS  Google Scholar 

  136. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  137. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  138. Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    Article  CAS  PubMed  Google Scholar 

  139. Kaiser, K. et al. An sp-hybridized molecular carbon allotrope, cyclo[18]carbon. Science 365, 1299–1301 (2019).

    Article  CAS  PubMed  Google Scholar 

  140. Pavlicek, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Kruger, J. et al. Decacene: on-surface generation. Angew. Chem. Int. Ed. 56, 11945–11948 (2017).

    Article  Google Scholar 

  142. Gross, L. et al. Atomic force microscopy for molecular structure elucidation. Angew. Chem. Int. Ed. 57, 3888–3908 (2018).

    Article  CAS  Google Scholar 

  143. Timmerman, P., Verboom, W. & Reinhoudt, D. N. Resorcinarenes. Tetrahedron 52, 2663–2704 (1996).

    Article  CAS  Google Scholar 

  144. Purse, B. W., Shivanyuk, A. & Rebek, J. Resorcin[6]arene as a building block for tubular crystalline state architectures. Chem. Commun. 2002, 2612–2613 (2002).

  145. Zhang, Y., Tong, S. & Wang, M. X. Synthesis and structure of functionalized zigzag hydrocarbon belts. Angew. Chem. Int. Ed. 59, 18151–18155 (2020).

    Article  CAS  Google Scholar 

  146. Nishigaki, S. et al. Synthesis of belt- and Möbius-shaped cycloparaphenylenes by rhodium-catalyzed alkyne cyclotrimerization. J. Am. Chem. Soc. 141, 14955–14960 (2019).

    Article  CAS  PubMed  Google Scholar 

  147. Nogami, J. et al. Enantioselective synthesis of planar chiral zigzag-type cyclophenylene belts by rhodium-catalyzed alkyne cyclotrimerization. J. Am. Chem. Soc. 142, 9834–9842 (2020).

    CAS  PubMed  Google Scholar 

  148. Xie, J. et al. Heteroatom-bridged molecular belts as containers. Nat. Commun. 11, 3348 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wang, J. & Miao, Q. A tetraazapentacene-pyrene belt: toward synthesis of N-doped zigzag carbon nanobelts. Org. Lett. 21, 10120–10124 (2019).

    Article  CAS  PubMed  Google Scholar 

  150. Tan, M. L. et al. Oxygen and nitrogen-embedded zigzag hydrocarbon belts. Angew. Chem. Int. Ed. 59, 23649–23658 (2020).

  151. Kassaee, M. Z., Rad, A. H. & Amiri, S. S. Carbon–nitrogen nanorings and nanoribbons: a theoretical approach for altering the ground states of cyclacenes and polyacenes. Monatsh. Chem. 141, 1313–1319 (2010).

    Article  CAS  Google Scholar 

  152. Winkler, M. & Houk, K. N. Nitrogen-rich oligoacenes: candidates for n-channel organic semiconductors. J. Am. Chem. Soc. 129, 1805–1815 (2007).

    Article  CAS  PubMed  Google Scholar 

  153. Tonzola, C. J., Alam, M. M., Kaminsky, W. & Jenekhe, S. A. New n-type organic semiconductors: synthesis, single crystal structures, cyclic voltammetry, photophysics, electron transport, and electroluminescence of a series of diphenylanthrazolines. J. Am. Chem. Soc. 125, 13548–13558 (2003).

    Article  CAS  PubMed  Google Scholar 

  154. Wu, Y.-T. & Siegel, J. S. Synthesis, structures, and physical properties of aromatic molecular-bowl hydrocarbons. In Polyarenes I (eds Siegel, J. S. & Wu, Y.-T.) 63–120 (Springer Berlin Heidelberg, 2014).

  155. Qiu, Y., Chen, H., Feng, Y., Schott, M. E. & Stoddart, J. F. Stitching up the belt[n]arenes. Chem 6, 826–829 (2020).

    Article  CAS  Google Scholar 

  156. Eisenhut, F. et al. Dodecacene generated on surface: reopening of the energy gap. ACS Nano 14, 1011–1017 (2020).

    Article  CAS  PubMed  Google Scholar 

  157. Grommet, A. B., Feller, M. & Klajn, R. Chemical reactivity under nanoconfinement. Nat. Nanotechnol. 15, 256–271 (2020).

    Article  CAS  PubMed  Google Scholar 

  158. Haberhauer, G. & Hoffmann, R. Aromaticity and Other Conjugation Effects (Wiley, 2012).

  159. Angus, J. R. O. & Johnson, R. P. Columnar homoconjugation. J. Org. Chem. 53, 314–317 (1988).

    Article  CAS  Google Scholar 

  160. Colwell, C. E., Price, T. W., Stauch, T. & Jasti, R. Strain visualization for strained macrocycles. Chem. Sci. 11, 3923–3930 (2020).

    Article  CAS  Google Scholar 

  161. Alder, R. W. & Sessions, R. B. Force field calculations on molecular belts built from cyclohexa-1,4-diene rings. J. Chem. Soc. Perkin Trans. 2, 1849–1854 (1985).

  162. Peeks, M. D., Claridge, T. D. & Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 541, 200–203 (2017).

    Article  CAS  PubMed  Google Scholar 

  163. Rickhaus, M. et al. Global aromaticity at the nanoscale. Nat. Chem. 12, 236–241 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Türker, L. The effect of cyclization on acenes. J. Mol. Struct. THEOCHEM 531, 333–337 (2000).

    Article  Google Scholar 

  165. Türker, L. The possibility of superaromatic cyclacenes. Polycyclic Aromat. Compd. 4, 231–236 (1995).

    Article  Google Scholar 

  166. Türker, L. An approximate Hückel total π-electron energy formula for benzenoid aromatics. Polycyclic Aromat. Compd. 4, 107–114 (2006).

    Article  Google Scholar 

  167. André, J.-M., Champagne, B., Perpète, E. A. & Guillaume, M. Linear, cyclic, and Möbius strip polyacenes: the influence of the topology on the size-dependent HOMO–LUMO energy gap. Int. J. Quantum Chem. 84, 607–616 (2001).

    Article  Google Scholar 

  168. Türker, L. AM1 treatment of Hückel type cyclacenes. J. Mol. Struct. 407, 217–220 (1997).

    Article  Google Scholar 

  169. Guillaume, M., Champagne, B., Perpète, E. A. & André, J.-M. Möbius strip versus linear and cyclic polyacenes: a Hückel and semiempirical investigation. Theor. Chem. Acc. 105, 431–436 (2001).

    Article  CAS  Google Scholar 

  170. Türker, L. Zigzag cyclopolyacenes: a theoretical study. J. Mol. Struct. THEOCHEM 491, 275–280 (1999).

    Article  Google Scholar 

  171. Gutman, I., Biedermann, P. U., IvanovPetrović, V. & Agranat, I. Cyclic conjugation effects in cyclacenes. Polycyclic Aromat. Compd. 8, 189–202 (1996).

    Article  Google Scholar 

  172. Türker, L. Unusual alternation of HMO bond orders in cyclacenes. Polycyclic Aromat. Compd. 8, 67–71 (1996).

    Article  Google Scholar 

  173. Türker, L. MNDO treatment of the Hückel and Möbius types of cyclacenes. J. Mol. Struct. THEOCHEM 454, 83–86 (1998).

    Article  Google Scholar 

  174. Hückel, E. Quantentheoretische beiträge zum benzolproblem. Eur. Phys. J. A 70, 204–286 (1931).

    Google Scholar 

  175. Baird, N. C. Quantum organic photochemistry. II. Resonance and aromaticity in the lowest 3ππ* state of cyclic hydrocarbons. J. Am. Chem. Soc. 94, 4941–4948 (1972).

    Article  CAS  Google Scholar 

  176. Heilbronner, E. Hückel molecular orbitals of Möbius-type conformations of annulenes. Tetrahedron Lett. 5, 1923–1928 (1964).

    Article  Google Scholar 

  177. Ajami, D., Oeckler, O., Simon, A. & Herges, R. Synthesis of a Möbius aromatic hydrocarbon. Nature 426, 819–821 (2003).

    Article  CAS  PubMed  Google Scholar 

  178. Liu, C., Ni, Y., Lu, X., Li, G. & Wu, J. Global aromaticity in macrocyclic polyradicaloids: Hückel’s rule or Baird’s rule? Acc. Chem. Res. 52, 2309–2321 (2019).

    Article  CAS  PubMed  Google Scholar 

  179. Chen, Z. & King, R. B. Spherical aromaticity: Recent work on fullerenes, polyhedral boranes, and related structures. Chem. Rev. 105, 3613–3642 (2005).

    Article  CAS  PubMed  Google Scholar 

  180. Kivelson, S. & Chapman, O. L. Polyacene and a new class of quasi-one-dimensional conductors. Phys. Rev. B 28, 7236–7243 (1983).

    Article  CAS  Google Scholar 

  181. Freixas, V. M., Oldani, N., Franklin-Mergarejo, R., Tretiak, S. & Fernandez-Alberti, S. Electronic energy relaxation in a photoexcited fully fused edge sharing carbon nanobelt. J. Phys. Chem. Lett. 11, 4711–4719 (2020).

    Article  CAS  PubMed  Google Scholar 

  182. Choi, H. S., Suh, S. B., Cho, S. J. & Kim, K. S. Ionophores and receptors using cation-π interactions: collarenes. Proc. Natl Acad. Sci. USA 95, 12094–12099 (1998).

    Article  CAS  PubMed  Google Scholar 

  183. Kyba, E. P. et al. Host–guest complexation. 1. Concept and illustration. J. Am. Chem. Soc. 99, 2564–2571 (1977).

    Article  CAS  Google Scholar 

  184. Cram, D. J. & Cram, J. M. Host-guest chemistry: complexes between organic compounds simulate the substrate selectivity of enzymes. Science 183, 803–809 (1974).

    Article  CAS  PubMed  Google Scholar 

  185. Cram, D. J. The design of molecular hosts, guests, and their complexes (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 1009–1020 (1988).

    Article  Google Scholar 

  186. Lehn, J. Cryptates: inclusion complexes of macropolycyclic receptor molecules. Pure Appl. Chem. 50, 871–892 (1979).

    Article  Google Scholar 

  187. Lehn, J.-M. Design of Organic Complexing Agents Strategies Towards Properties (Springer, 1973).

  188. Lehn, J.-M. Supramolecular chemistry—scope and perspectives molecules, supermolecules, and molecular devices (Nobel Lecture). Angew. Chem. Int. Ed. Engl. 27, 89–112 (1988).

    Article  Google Scholar 

  189. Haver, R. & Anderson, H. L. Synthesis and properties of porphyrin nanotubes. Helv. Chim. Acta 102, e1800211 (2019).

    Article  Google Scholar 

  190. Bols, P. S. & Anderson, H. L. Template-directed synthesis of molecular nanorings and cages. Acc. Chem. Res. 51, 2083–2092 (2018).

    Article  CAS  PubMed  Google Scholar 

  191. Sun, Z. et al. Finite phenine nanotubes with periodic vacancy defects. Science 363, 151–155 (2019).

    Article  CAS  PubMed  Google Scholar 

  192. Bunz, U. H., Menning, S. & Martin, N. para-Connected cyclophenylenes and hemispherical polyarenes: building blocks for single-walled carbon nanotubes? Angew. Chem. Int. Ed. 51, 7094–7101 (2012).

    Article  CAS  Google Scholar 

  193. Yu, X. et al. Cap formation engineering: from opened C60 to single-walled carbon nanotubes. Nano Lett. 10, 3343–3349 (2010).

    Article  CAS  PubMed  Google Scholar 

  194. Liu, B. et al. Nearly exclusive growth of small diameter semiconducting single-wall carbon nanotubes from organic chemistry synthetic end-cap molecules. Nano Lett. 15, 586–595 (2015).

    Article  CAS  PubMed  Google Scholar 

  195. Omachi, H., Nakayama, T., Takahashi, E., Segawa, Y. & Itami, K. Initiation of carbon nanotube growth by well-defined carbon nanorings. Nat. Chem. 5, 572–576 (2013).

    Article  CAS  PubMed  Google Scholar 

  196. Sanchez-Valencia, J. R. et al. Controlled synthesis of single-chirality carbon nanotubes. Nature 512, 61–64 (2014).

    Article  CAS  PubMed  Google Scholar 

  197. Scott, L. T. et al. A rational chemical synthesis of C60. Science 295, 1500–1503 (2002).

    Article  CAS  PubMed  Google Scholar 

  198. Koga, Y., Kaneda, T., Saito, Y., Murakami, K. & Itami, K. Synthesis of partially and fully fused polyaromatics by annulative chlorophenylene dimerization. Science 359, 435–439 (2018).

    Article  CAS  PubMed  Google Scholar 

  199. Fort, E. H., Donovan, P. M. & Scott, L. T. Diels–Alder reactivity of polycyclic aromatic hydrocarbon bay regions: implications for metal-free growth of single-chirality carbon nanotubes. J. Am. Chem. Soc. 131, 16006–16007 (2009).

    Article  CAS  PubMed  Google Scholar 

  200. Butterfield, A. M., Gilomen, B. & Siegel, J. S. Kilogram-scale production of corannulene. Org. Process Res. Dev. 16, 664–676 (2012).

    Article  CAS  Google Scholar 

  201. Scott, L. T. Exotic chemistry and rational organic syntheses at 1000 °C. J. Org. Chem. 81, 11535–11547 (2016).

    Article  CAS  PubMed  Google Scholar 

  202. Golder, M. R., Zakharov, L. N. & Jasti, R. Stereochemical implications toward the total synthesis of aromatic belts. Pure Appl. Chem. 89, 1603–1617 (2017).

    Article  CAS  Google Scholar 

  203. Zhu, C., Kalin, A. J. & Fang, L. Covalent and noncovalent approaches to rigid coplanar π-conjugated molecules and macromolecules. Acc. Chem. Res. 52, 1089–1100 (2019).

    Article  CAS  PubMed  Google Scholar 

  204. Lee, J., Kalin, A. J., Yuan, T., Al-Hashimi, M. & Fang, L. Fully conjugated ladder polymers. Chem. Sci. 8, 2503–2521 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Teo, Y. C., Lai, H. W. H. & Xia, Y. Synthesis of ladder polymers: developments, challenges, and opportunities. Chem. Eur. J. 23, 14101–14112 (2017).

    Article  CAS  PubMed  Google Scholar 

  206. Scherf, U. & Müllen, K. The synthesis of ladder polymers. Adv. Polym. Sci. 123, 1–40 (1995).

    Article  CAS  Google Scholar 

  207. Scherf, U. Ladder-type materials. J. Mater. Chem. 9, 1853–1864 (1999).

    Article  CAS  Google Scholar 

  208. Grimsdale, A. C. & Müllen, K. Oligomers and polymers based on bridged phenylenes as electronic materials. Macromol. Rapid Commun. 28, 1676–1702 (2007).

    Article  CAS  Google Scholar 

  209. Blatter, K. & Schlüeter, A. D. Ribbon-shaped structures via repetitive Diels–Alder reaction. A polycatafusene. Macromolecules 22, 3506–3508 (1989).

    Article  CAS  Google Scholar 

  210. Schlüter, A. D. Ladder polymers: the new generation. Adv. Mater. 3, 282–291 (1991).

    Article  Google Scholar 

  211. Loffler, M., Enkelmann, V. & Schlüter, A. D. A Diels–Alder ladder polymer bridged by imino and ether groups. Acta Polymer 44, 50–53 (1993).

    Article  Google Scholar 

  212. Schlüter, A. D., Loffler, M. & Enkelmann, V. Synthesis of a fully unsaturated all-carbon ladder polymer. Nature 368, 831–834 (1994).

    Article  Google Scholar 

  213. Schlicke, B., Schirmer, H. & Schlüter, A. D. Unsaturated ladder polymers: structural variations and improved molecular weights. Adv. Mater. 7, 544–546 (1995).

    Article  CAS  Google Scholar 

  214. Scherf, U. & Müllen, K. Design and synthesis of extended π-systems: monomers, oligomers, polymers. Synthesis 1992, 23–38 (1992).

  215. Wegener, S. & Müllen, K. New ladder polymers via repetitive Diels–Alder reaction under high-pressure. Macromolecules 26, 3037–3040 (1993).

    Article  CAS  Google Scholar 

  216. Pollmann, M. & Müllen, K. Semiflexible ribbon-type structures via repetitive Diels–Alder cycloaddition. Cage formation versus polymerization. J. Am. Chem. Soc. 116, 2318–2323 (1994).

    Article  CAS  Google Scholar 

  217. Horn, T., Wegener, S. & Müllen, K. Poly[n]acene precursors via repetitive Diels–Alder reactions with dehydrobenzenes. Macromol. Chem. Phys. 196, 2463–2474 (1995).

    Article  CAS  Google Scholar 

  218. Thomas, S. W. I. et al. Perpendicular organization of macromolecules: synthesis and alignment studies of a soluble poly(iptycene). J. Am. Chem. Soc. 127, 17976–17977 (2005).

    Article  CAS  PubMed  Google Scholar 

  219. Chen, Z. H., Amara, J. P., Thomas, S. W. I. & Swager, T. M. Synthesis of a novel poly(iptycene) ladder polymer. Macromolecules 39, 3202–3209 (2006).

    Article  CAS  Google Scholar 

  220. Perepichka, D. F., Bendikov, M., Meng, H. & Wudl, F. A one-step synthesis of a poly(iptycene) through an unusual Diels–Alder cyclization/dechlorination of tetrachloropentacene. J. Am. Chem. Soc. 125, 10190–10191 (2003).

    Article  CAS  PubMed  Google Scholar 

  221. Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  222. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  223. Talirz, L. et al. On-surface synthesis and characterization of 9-atom wide armchair graphene nanoribbons. ACS Nano 11, 1380–1388 (2017).

    Article  CAS  PubMed  Google Scholar 

  224. Sakaguchi, H., Song, S., Kojima, T. & Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9, 57–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  225. Jordan, R. S. et al. Synthesis of N = 8 armchair graphene nanoribbons from four distinct polydiacetylenes. J. Am. Chem. Soc. 139, 15878–15890 (2017).

    Article  CAS  PubMed  Google Scholar 

  226. Matsui, K., Segawa, Y., Namikawa, T., Kamada, K. & Itami, K. Synthesis and properties of all-benzene carbon nanocages: a junction unit of branched carbon nanotubes. Chem. Sci. 4, 84–88 (2013).

    Article  CAS  Google Scholar 

  227. Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).

  228. Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).

    Article  CAS  PubMed  Google Scholar 

  229. Fan, Y. Y. et al. An isolable catenane consisting of two Möbius conjugated nanohoops. Nat. Commun. 9, 3037 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Van Raden, J. M., Jarenwattananon, N. N., Zakharov, L. N. & Jasti, R. Active metal template synthesis and characterization of a nanohoop [c2]daisy chain rotaxane. Chem. Eur. J. 26, 10205–10209 (2020).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This Review is dedicated to the memory of François Diederich. We thank K. Itami for giving us advanced access to an article describing the ‘Synthesis of a zigzag carbon nanobelt’. We also thank C. Chi and Y. Han for their helpful comments on our section describing ‘The synthesis of an octabenzo[12]cyclacene’. Q.-H.G., Y.Q. and J.F.S. thank Northwestern University for financial support. M.-X.W. thanks the National Natural Science Foundation of China (22050005) for financial support.

Author information

Authors and Affiliations

Authors

Contributions

Q.-H.G. came up with the proposal to write the Review and wrote the first draft. M.-X.W. and J.F.S. oversaw the preparation of the manuscript. Y.Q. contributed the writing of the outlook. All authors contributed to discussions and wrote the manuscript.

Corresponding authors

Correspondence to Mei-Xiang Wang or J. Fraser Stoddart.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, QH., Qiu, Y., Wang, MX. et al. Aromatic hydrocarbon belts. Nat. Chem. 13, 402–419 (2021). https://doi.org/10.1038/s41557-021-00671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00671-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing