Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation

Abstract

In cells, myriad membrane-interacting proteins generate and maintain curved membrane domains with radii of curvature around or below 50 nm. To understand how such highly curved membranes modulate specific protein functions, and vice versa, it is imperative to use small liposomes with precisely defined attributes as model membranes. Here, we report a versatile and scalable sorting technique that uses cholesterol-modified DNA ‘nanobricks’ to differentiate hetero-sized liposomes by their buoyant densities. This method separates milligrams of liposomes, regardless of their origins and chemical compositions, into six to eight homogeneous populations with mean diameters of 30–130 nm. We show that these uniform, leak-resistant liposomes serve as ideal substrates to study, with an unprecedented resolution, how membrane curvature influences peripheral (ATG3) and integral (SNARE) membrane protein activities. Compared with conventional methods, our sorting technique represents a streamlined process to achieve superior liposome size uniformity, which benefits research in membrane biology and the development of liposomal drug-delivery systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: DNA-brick-assisted liposome-sorting scheme and results.
Fig. 2: Sorting liposomes containing self-cleaving deoxyribozymes.
Fig. 3: ATG3-catalysed GL1 lipidation reaction studied using uniformly sized liposomes.
Fig. 4: SNARE-mediated membrane fusion studied using uniformly-sized liposomes.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The data (TEM images, gel and blot images, fluorescence traces and statistical data) supporting the findings of this study are available within the paper and its Supplementary Information files.

References

  1. McMahon, H. T. & Gallop, J. L. Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Jarsch, I. K., Daste, F. & Gallop, J. L. Membrane curvature in cell biology: an integration of molecular mechanisms. J. Cell Biol. 214, 375–387 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woodle, M. C. & Papahadjopoulos, D. Liposome preparation and size characterization. Methods Enzymol. 171, 193–217 (1989).

    Article  CAS  PubMed  Google Scholar 

  4. Schubert, R. Liposome preparation by detergent removal. Methods Enzymol. 367, 46–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Patil, Y. P. & Jadhav, S. Novel methods for liposome preparation. Chem. Phys. Lipids 177, 8–18 (2014).

    Article  CAS  PubMed  Google Scholar 

  6. Berger, N., Sachse, A., Bender, J., Schubert, R. & Brandl, M. Filter extrusion of liposomes using different devices: comparison of liposome size, encapsulation efficiency, and process characteristics. Int. J. Pharm. 223, 55–68 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Szoka, F. et al. Preparation of unilamellar liposomes of intermediate size (0.1–0.2 mumol) by a combination of reverse phase evaporation and extrusion through polycarbonate membranes. Biochim. Biophys. Acta 601, 559–571 (1980).

    Article  CAS  PubMed  Google Scholar 

  8. Hinna, A. et al. Filter-extruded liposomes revisited: a study into size distributions and morphologies in relation to lipid-composition and process parameters. J. Liposome Res. 26, 11–20 (2016).

    Article  CAS  PubMed  Google Scholar 

  9. Silva, R., Ferreira, H., Little, C. & Cavaco-Paulo, A. Effect of ultrasound parameters for unilamellar liposome preparation. Ultrason. Sonochem. 17, 628–632 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Goormaghtigh, E. & Scarborough, G. A. Density-based separation of liposomes by glycerol gradient centrifugation. Anal. Biochem. 159, 122–131 (1986).

    Article  CAS  PubMed  Google Scholar 

  11. Lundahl, P., Zeng, C. M., Lagerquist Hagglund, C., Gottschalk, I. & Greijer, E. Chromatographic approaches to liposomes, proteoliposomes and biomembrane vesicles. J. Chromatogr. B 722, 103–120 (1999).

    Article  CAS  Google Scholar 

  12. van Swaay, D. & deMello, A. Microfluidic methods for forming liposomes. Lab Chip 13, 752–767 (2013).

    Article  PubMed  Google Scholar 

  13. Jahn, A., Vreeland, W. N., Gaitan, M. & Locascio, L. E. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J. Am. Chem. Soc. 126, 2674–2675 (2004).

    Article  CAS  PubMed  Google Scholar 

  14. Jahn, A., Vreeland, W. N., DeVoe, D. L., Locascio, L. E. & Gaitan, M. Microfluidic directed formation of liposomes of controlled size. Langmuir 23, 6289–6293 (2007).

    Article  CAS  PubMed  Google Scholar 

  15. Yang, Y. et al. Self-assembly of size-controlled liposomes on DNA nanotemplates. Nat. Chem. 8, 476–483 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang, Z., Yang, Y., Pincet, F., Llaguno, M. C. & Lin, C. X. Placing and shaping liposomes with reconfigurable DNA nanocages. Nat. Chem. 9, 653–659 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Perrault, S. D. & Shih, W. M. Virus-inspired membrane encapsulation of DNA nanostructures to achieve in vivo stability. ACS Nano 8, 5132–5140 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Daniel, E. Equilibrium sedimentation of a polyelectrolyte in a density gradient of a low-molecular weight electrolyte. I. DNA in CsCl. Biopolymers 7, 359–377 (1969).

    Article  CAS  PubMed  Google Scholar 

  19. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2018).

    Article  CAS  Google Scholar 

  20. Kwak, M. & Herrmann, A. Nucleic acid amphiphiles: synthesis and self-assembled nanostructures. Chem. Soc. Rev. 40, 5745–5755 (2011).

    Article  CAS  PubMed  Google Scholar 

  21. Langecker, M., Arnaut, V., List, J. & Simmel, F. C. DNA nanostructures interacting with lipid bilayer membranes. Acc. Chem. Res. 47, 1807–1815 (2014).

    Article  CAS  PubMed  Google Scholar 

  22. Howorka, S. Changing of the guard. Science 352, 890–891 (2016).

    Article  CAS  PubMed  Google Scholar 

  23. Shen, Q., Grome, M. W., Yang, Y. & Lin, C. Engineering lipid membranes with programmable DNA nanostructures. Adv. Biosyst. 4, 1900215 (2020).

    Article  CAS  PubMed  Google Scholar 

  24. He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. Mathieu, F. et al. Six-helix bundles designed from DNA. Nano Lett. 5, 661–665 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hill, H. D., Millstone, J. E., Banholzer, M. J. & Mirkin, C. A. The role radius of curvature plays in thiolated oligonucleotide loading on gold nanoparticles. ACS Nano 3, 418–424 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Du, X. Y., Zhong, X., Li, W., Li, H. & Gu, H. Z. Retraining and optimizing DNA-hydrolyzing deoxyribozymes for robust single- and multiple-turnover activities. ACS Catal. 8, 5996–6005 (2018).

    Article  CAS  Google Scholar 

  28. Nguyen, N., Shteyn, V. & Melia, T. J. Sensing membrane curvature in macroautophagy. J. Mol. Biol. 429, 457–472 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nath, S. et al. Lipidation of the LC3/GABARAP family of autophagy proteins relies on a membrane-curvature-sensing domain in Atg3. Nat. Cell Biol. 16, 415–424 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  PubMed  Google Scholar 

  31. Jahn, R. & Scheller, R. H. SNAREs — engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Sudhof, T. C. & Rothman, J. E. Membrane fusion: grappling with SNARE and SM proteins. Science 323, 474–477 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hernandez, J. M. et al. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336, 1581–1584 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hernandez, J. M., Kreutzberger, A. J., Kiessling, V., Tamm, L. K. & Jahn, R. Variable cooperativity in SNARE-mediated membrane fusion. Proc. Natl Acad. Sci. USA 111, 12037–12042 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mostafavi, H. et al. Entropic forces drive self-organization and membrane fusion by SNARE proteins. Proc. Natl Acad. Sci. USA 114, 5455–5460 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ji, H. et al. Protein determinants of SNARE-mediated lipid mixing. Biophys. J. 99, 553–560 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stratton, B. S. et al. Cholesterol increases the openness of SNARE-mediated flickering fusion pores. Biophys. J. 110, 1538–1550 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Xu, W. M. et al. A programmable DNA origami platform to organize SNAREs for membrane fusion. J. Am. Chem. Soc. 138, 4439–4447 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Parlati, F. et al. Rapid and efficient fusion of phospholipid vesicles by the α-helical core of a SNARE complex in the absence of an N-terminal regulatory domain. Proc. Natl Acad. Sci. USA 96, 12565–12570 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Malinin, V. S. & Lentz, B. R. Energetics of vesicle fusion intermediates: comparison of calculations with observed effects of osmotic and curvature stresses. Biophys. J. 86, 2951–2964 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang, B. et al. Synaptic vesicle size and number are regulated by a clathrin adaptor protein required for endocytosis. Neuron 21, 1465–1475 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Qu, L., Akbergenova, Y., Hu, Y. & Schikorski, T. Synapse-to-synapse variation in mean synaptic vesicle size and its relationship with synaptic morphology and function. J. Comp. Neurol. 514, 343–352 (2009).

    Article  PubMed  Google Scholar 

  43. Czogalla, A. et al. Amphipathic DNA origami nanoparticles to scaffold and deform lipid membrane vesicles. Angew. Chem. Int. Ed. 54, 6501–6505 (2015).

    Article  CAS  Google Scholar 

  44. Grome, M. W., Zhang, Z., Pincet, F. & Lin, C. X. Vesicle tubulation with self-assembling DNA nanosprings. Angew. Chem. Int. Ed. 57, 5330–5334 (2018).

    Article  CAS  Google Scholar 

  45. Franquelim, H. G., Khmelinskaia, A., Sobczak, J. P., Dietz, H. & Schwille, P. Membrane sculpting by curved DNA origami scaffolds. Nat. Commun. 9, 811 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Williams S., et al. Tiamat: a three-dimensional editing tool for complex DNA structures. In DNA Computing (Eds. Goel, A. et al.) 90–101 (Springer, 2009).

  47. Nair, U. et al. SNARE proteins are required for macroautophagy. Cell 146, 290–302 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Choy, A. et al. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338, 1072–1076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Jotwani, A., Richerson, D. N., Motta, I., Julca-Zevallos, O. & Melia, T. J. Approaches to the study of Atg8-mediated membrane dynamics in vitro. Methods Cell. Biol. 108, 93–116 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Wu, Z. et al. Dilation of fusion pores by crowding of SNARE proteins. eLife 6, e22964 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work is supported by a National Institutes of Health (NIH) Director’s New Innovator Award (GM114830), an NIH grant (GM132114) and a Yale University faculty startup fund to C.L., NIH grants to E.R.C. (MH061876 and NS097362), to T.M. (GM100930 and GM109466) and to E.K. (NS113236), and a National Key Research and Development Program of China grant (2020YFA0908901) and National Natural Science Foundation of China grants (21673050, 91859104 and 81861138004) to H.G. Author E.R.C. is an Investigator of the Howard Hughes Medical Institute. Q.X. is supported by a Graduate Scholarship from the Agency for Science, Technology and Research (Singapore).

Author information

Authors and Affiliations

Authors

Contributions

Y.Y. initiated the project, designed and performed most of the experiments, analysed the data and prepared the manuscript. Z.W. performed the membrane fusion study and analysed the data. L.W. performed the lipidation study. K.Z. performed the cryo-EM study. K.X. replicated the sorting method. Q.X., L.L. and Z.Z. performed the negative-stain TEM study. Y.X. supervised the cryo-EM study and interpreted the data. T.J.M. designed and supervised the lipidation study and interpreted the data. E.K. and E.R.C. supervised the membrane fusion study and interpreted the data. H.G. designed the liposome leakage assay, supervised replication of the sorting method and interpreted the data. C.L. initiated the project, designed and supervised the study, interpreted the data and prepared the manuscript. All authors participated in the discussions, and reviewed and approved the manuscript.

Corresponding authors

Correspondence to Hongzhou Gu or Chenxiang Lin.

Ethics declarations

Competing interests

Yale University has filed a provisional patent (US Application No. 62/968,683; inventors: C.L. and Y.Y.) on the DNA-assisted liposome-sorting method.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–5, Figs. 1–28 and Notes 1 and 2.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data of liposome diameters.

Source Data Fig. 2

Unprocessed gels.

Source Data Fig. 3

Unprocessed gels and western blots.

Source Data Fig. 4

Statistical source data of liposome diameters, raw data of fluorescence traces and data underlying plots.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Wu, Z., Wang, L. et al. Sorting sub-150-nm liposomes of distinct sizes by DNA-brick-assisted centrifugation. Nat. Chem. 13, 335–342 (2021). https://doi.org/10.1038/s41557-021-00667-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00667-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing