Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications

A Publisher Correction to this article was published on 08 June 2021

This article has been updated


The encoding of chemical compounds with amplifiable DNA tags facilitates the discovery of small-molecule ligands for proteins. To investigate the impact of stereo- and regiochemistry on ligand discovery, we synthesized a DNA-encoded library of 670,752 derivatives based on 2-azido-3-iodophenylpropionic acids. The library was selected against multiple proteins and yielded specific ligands. The selection fingerprints obtained for a set of protein targets of pharmaceutical relevance clearly showed the preferential enrichment of ortho-, meta- or para-regioisomers, which was experimentally verified by affinity measurements in the absence of DNA. The discovered ligands included novel selective enzyme inhibitors and binders to tumour-associated antigens, which enabled conditional chimeric antigen receptor T-cell activation and tumour targeting.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Library design, synthesis and encoding.
Fig. 2: Selection against CAIX, hit validation and conversion of ligands to CAR T-cell activators.
Fig. 3: Selection against CREBBP bromodomain, hit validation and selectivity determination.
Fig. 4: Selections against PI3KCA variants.
Fig. 5: Selections against tumour-associated antigens and human CtIP.

Data availability

The main data supporting the findings of this study are available within this article and its Supplementary Information. Software for the evaluation of high-throughput DNA sequencing was reported previously87.

Change history


  1. 1.

    Lerner, R. A. & Brenner, S. DNA-encoded compound libraries as open source: a powerful pathway to new drugs. Angew. Chem. Int. Ed. 56, 1164–1165 (2017).

    CAS  Google Scholar 

  2. 2.

    Neri, D. & Lerner, R. DNA-encoded chemical libraries: a selection system based on endowing organic compounds with amplifiable information. Ann. Rev. Biochem. 87, 24 (2018).

    Google Scholar 

  3. 3.

    Goodnow, R. A. Jr., Dumelin, C. E. & Keefe, A. D. DNA-encoded chemistry: enabling the deeper sampling of chemical space. Nat. Rev. Drug Discov. 16, 131–147 (2017).

    CAS  Google Scholar 

  4. 4.

    Favalli, N., Bassi, G., Scheuermann, J. & Neri, D. DNA-encoded chemical libraries—achievements and remaining challenges. FEBS Lett. 592, 2168–2180 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Dumelin, C. E. et al. A portable albumin binder from a DNA-encoded chemical library. Angew. Chem. Int. Ed. 47, 3196–3201 (2008).

    CAS  Google Scholar 

  6. 6.

    Franzini, R. M., Neri, D. & Scheuermann, J. DNA-encoded chemical libraries: advancing beyond conventional small-molecule libraries. Acc. Chem. Res. 47, 1247–1255 (2014).

    CAS  Google Scholar 

  7. 7.

    Liu, R., Li, X. & Lam, K. S. Combinatorial chemistry in drug discovery. Curr. Opin. Chem. Biol. 38, 117–126 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Zhu, Z. & Cuozzo, J. High-throughput affinity-based technologies for small-molecule drug discovery. J. Biomol. Screen. 14, 1157–1164 (2009).

    CAS  Google Scholar 

  9. 9.

    Zhao, G., Huang, Y., Zhou, Y., Li, Y. & Li, X. Future challenges with DNA-encoded chemical libraries in the drug discovery domain. Expert Opin. Drug Discov. 14, 735–753 (2019).

    CAS  Google Scholar 

  10. 10.

    Brenner, S. & Lerner, R. A. Encoded combinatorial chemistry. Proc. Natl Acad. Sci. USA 89, 5381–5383 (1992).

    CAS  Google Scholar 

  11. 11.

    Mannocci, L. et al. High-throughput sequencing allows the identification of binding molecules isolated from DNA-encoded chemical libraries. Proc. Natl Acad. Sci. USA 105, 17670–17675 (2008).

    CAS  Google Scholar 

  12. 12.

    Buller, F. et al. High-throughput sequencing for the identification of binding molecules from DNA-encoded chemical libraries. Bioorg. Med. Chem. Lett. 20, 4188–4192 (2010).

    CAS  Google Scholar 

  13. 13.

    Clark, M. A. et al. Design, synthesis and selection of DNA-encoded small-molecule libraries. Nat. Chem. Biol. 5, 647–654 (2009).

    CAS  Google Scholar 

  14. 14.

    Gartner, Z. J. et al. DNA-templated organic synthesis and selection of a library of macrocycles. Science 305, 1601–1605 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Melkko, S., Scheuermann, J., Dumelin, C. E. & Neri, D. Encoded self-assembling chemical libraries. Nat. Biotechnol. 22, 568–574 (2004).

    CAS  Google Scholar 

  16. 16.

    Wichert, M. et al. Dual-display of small molecules enables the discovery of ligand pairs and facilitates affinity maturation. Nat. Chem. 7, 241–249 (2015).

    CAS  Google Scholar 

  17. 17.

    Winter, G., Griffiths, A. D., Hawkins, R. E. & Hoogenboom, H. R. Making antibodies by phage display technology. Ann. Rev. Immunol. 12, 433–455 (1994).

    CAS  Google Scholar 

  18. 18.

    Lerner, R. A. et al. Antibodies from combinatorial libraries use functional receptor pleiotropism to regulate cell fates. Q. Rev. Biophys. 48, 389–394 (2015).

    Google Scholar 

  19. 19.

    D. Griffiths, A. et al. Isolation of high affinity human antibodies directly from large synthetic repertoires. EMBO J. 13, 3245–3260 (1994).

    Google Scholar 

  20. 20.

    Machutta, C. A. et al. Prioritizing multiple therapeutic targets in parallel using automated DNA-encoded library screening. Nat. Commun. 8, 16081 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Eidam, O. & Satz, A. L. Analysis of the productivity of DNA encoded libraries. MedChemComm 7, 1323–1331 (2016).

    CAS  Google Scholar 

  22. 22.

    Perelson, A. S. & Oster, G. F. Theoretical studies of clonal selection: minimal antibody repertoire size and reliability of self–non-self discrimination. J. Theor. Biol. 81, 645–670 (1979).

    CAS  Google Scholar 

  23. 23.

    Favalli, N. et al. A DNA-encoded library of chemical compounds based on common scaffolding structures reveals the impact of ligand geometry on protein recognition. ChemMedChem 13, 1303–1307 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Yuen, L. H. et al. A focused DNA-encoded chemical library for the discovery of inhibitors of NAD+-dependent enzymes. J. Am. Chem. Soc. 141, 5169–5181 (2019).

    CAS  Google Scholar 

  25. 25.

    Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1, 337–341 (2004).

    CAS  Google Scholar 

  26. 26.

    Gerry, C. J., Wawer, M. J., Clemons, P. A. & Schreiber, S. L. DNA barcoding a complete matrix of stereoisomeric small molecules. J. Am. Chem. Soc. 141, 10225–10235 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Li, Y. et al. Versatile protein recognition by the encoded display of multiple chemical elements on a constant macrocyclic scaffold. Nat. Chem. 10, 441–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Buller, F. et al. Design and synthesis of a novel DNA-encoded chemical library using Diels–Alder cycloadditions. Bioorg. Med. Chem. Lett. 18, 5926–5931 (2008).

    CAS  Google Scholar 

  29. 29.

    Franzini, R. M. & Randolph, C. Chemical space of DNA-encoded libraries. J. Med. Chem. 59, 6629–6644 (2016).

    CAS  Google Scholar 

  30. 30.

    Cazzamalli, S., Dal Corso, A., Widmayer, F. & Neri, D. Chemically defined antibody- and small molecule-drug conjugates for in vivo tumour targeting applications: a comparative analysis. J. Am. Chem. Soc. 140, 1617–1621 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Cazzamalli, S., Corso, A. D. & Neri, D. Targeted delivery of cytotoxic drugs: challenges, opportunities and new developments. Chimia 71, 712–715 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Urbanska, K. et al. A universal strategy for adoptive immunotherapy of cancer through use of a novel T-cell antigen receptor. Cancer Res. 72, 1844–1852 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Lee, Y. G. et al. Use of a single CAR T cell and several bispecific adapters facilitates eradication of multiple antigenically different solid tumours. Cancer Res. 79, 387–396 (2019).

    CAS  Google Scholar 

  34. 34.

    Pellegrino, C. et al. Impact of ligand size and conjugation chemistry on the performance of universal chimeric antigen receptor T cells for tumour killing. Bioconjugate Chem. 31, 1775–1783 (2020).

    CAS  Google Scholar 

  35. 35.

    Ma, J. S. et al. Versatile strategy for controlling the specificity and activity of engineered T cells. Proc. Natl Acad. Sci. USA 113, E450–E458 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Litovchick, A. et al. Encoded library synthesis using chemical ligation and the discovery of sEH inhibitors from a 334-million member library. Sci. Rep. 5, 10916 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Favalli, N., Bassi, G., Zanetti, T., Scheuermann, J. & Neri, D. Screening of three transition metal‐mediated reactions compatible with DNA‐encoded chemical libraries. Helv. Chim. Acta 102, e1900033 (2019).

    Google Scholar 

  38. 38.

    Satz, A. L. et al. DNA compatible multistep synthesis and applications to DNA encoded libraries. Bioconjugate Chem. 26, 1623–1632 (2015).

    CAS  Google Scholar 

  39. 39.

    de Pedro Beato, E. et al. Mild and efficient palladium-mediated C–N cross-coupling reaction between DNA-conjugated aryl bromides and aromatic amines. ACS Comb Sci. 21, 69–74 (2019).

    PubMed  PubMed Central  Google Scholar 

  40. 40.

    Li, J. Y. & Huang, H. Development of DNA-compatible Suzuki–Miyaura reaction in aqueous media. Bioconjugate Chem. 29, 3841–3846 (2018).

    CAS  Google Scholar 

  41. 41.

    Hervé, G. & Len, C. Heck and Sonogashira couplings in aqueous media—application to unprotected nucleosides and nucleotides. Sustain. Chem. Processes 3, 3 (2015).

    Google Scholar 

  42. 42.

    Ding, Y. & Clark, M. A. Robust Suzuki–Miyaura cross-coupling on DNA-linked substrates. ACS Comb. Sci. 17, 1–4 (2014).

    Google Scholar 

  43. 43.

    Ding, Y., DeLorey, J. L. & Clark, M. A. Novel catalyst system for Suzuki–Miyaura coupling of challenging DNA-linked aryl chlorides. Bioconjugate Chem. 27, 2597–2600 (2016).

    CAS  Google Scholar 

  44. 44.

    Bassi, G. et al. Comparative evaluation of DNA-encoded chemical selections performed using DNA in single-stranded or double-stranded format. Biochem. Biophys. Res. Commun. 533, 223–229 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Supuran, C. T. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat. Rev. Drug Discov. 7, 168–181 (2008).

    CAS  Google Scholar 

  46. 46.

    Alterio, V., Esposito, D., Monti, S. M., Supuran, C. T. & De Simone, G. Crystal structure of the human carbonic anhydrase II adduct with 1-(4-sulfamoylphenyl-ethyl)-2,4,6-triphenylpyridinium perchlorate, a membrane-impermeant, isoform selective inhibitor. J. Enzyme Inhib. Med. Chem. 33, 151–157 (2018).

    CAS  Google Scholar 

  47. 47.

    Sannino, A. et al. Quantitative assessment of affinity selection performance by using DNA-encoded chemical libraries. ChemBioChem 20, 955 (2019).

    CAS  Google Scholar 

  48. 48.

    Midelfort, K. S. et al. Substantial energetic improvement with minimal structural perturbation in a high affinity mutant antibody. J. Mol. Biol. 343, 685–701 (2004).

    CAS  Google Scholar 

  49. 49.

    Breen, M. E. & Mapp, A. K. Modulating the masters: chemical tools to dissect CBP and p300 function. Curr. Opin. Chem. Biol. 45, 195–203 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50.

    Rooney, T. P. et al. A series of potent CREBBP bromodomain ligands reveals an induced-fit pocket stabilized by a cation–π interaction. Angew. Chem. Int. Ed. 53, 6126–6130 (2014).

    CAS  Google Scholar 

  51. 51.

    Schiedel, M. & Conway, S. J. Small molecules as tools to study the chemical epigenetics of lysine acetylation. Curr. Opin. Chem. Biol. 45, 166–178 (2018).

    CAS  Google Scholar 

  52. 52.

    Brand, M. et al. Controlling intramolecular interactions in the design of selective, high-affinity, ligands for the CREBBP bromodomain. Preprint at ChemRxiv (2020).

  53. 53.

    Huang, C. H. et al. The structure of a human p110ɑ/p85ɑ complex elucidates the effects of oncogenic PI3Kɑ mutations. Science 318, 1744–1748 (2007).

    CAS  Google Scholar 

  54. 54.

    Katso, R. et al. Cellular function of phosphoinositide 3-kinases: implications for development, immunity, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 17, 61 (2001).

    Google Scholar 

  55. 55.

    Zhao, L. & Vogt, P. K. Class I PI3K in oncogenic cellular transformation. Oncogene 27, 5486–5496 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Samuels, Y. et al. High frequency of mutations of the PIK3CA gene in human cancers. Science 304, 554 (2004).

    CAS  Google Scholar 

  57. 57.

    Miller, M. S. et al. Identification of allosteric binding sites for PI3Kɑ oncogenic mutant specific inhibitor design. Bioorg. Med. Chem. 25, 1481–1486 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58.

    Brack, S. S., Silacci, M., Birchler, M. & Neri, D. Tumour-targeting properties of novel antibodies specific to the large isoform of tenascin-C. Clin. Cancer Res. 12, 3200–3208 (2006).

    CAS  Google Scholar 

  59. 59.

    Sartori, A. A. et al. Human CtIP promotes DNA end resection. Nature 450, 509–514 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60.

    Kubala, M. H. & DeClerck, Y. A. The plasminogen activator inhibitor-1 paradox in cancer: a mechanistic understanding. Cancer Metastasis Rev. 38, 483–492 (2019).

    PubMed  PubMed Central  Google Scholar 

  61. 61.

    Davies, O. R. et al. CtIP tetramer assembly is required for DNA-end resection and repair. Nat. Struct. Mol. Biol. 22, 150–157 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. 62.

    Prati, L., Bigatti, M., Donckele, E. J., Neri, D. & Samain, F. On-DNA hit validation methodologies for ligands identified from DNA-encoded chemical libraries. Biochem. Biophys. Res. Commun. 533, 235–240 (2020).

    CAS  Google Scholar 

  63. 63.

    Yang, H. et al. Discovery of a potent class of PI3Kɑ inhibitors with unique binding mode via encoded library technology (ELT). ACS Med. Chem. Lett. 6, 531–536 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Janku, F. et al. PIK3CA mutation H1047R is associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase clinical trials. Cancer Res. 73, 276–284 (2013).

    CAS  Google Scholar 

  65. 65.

    Alari, V. et al. Generation of three iPSC lines (IAIi002, IAIi004, IAIi003) from Rubinstein–Taybi syndrome 1 patients carrying CREBBP non sense c.4435G>T, p.(Gly1479*) and c.3474G>A, p.(Trp1158*) and missense c.4627G>T, p.(Asp1543Tyr) mutations. Stem Cell Res. 40, 101553 (2019).

    CAS  Google Scholar 

  66. 66.

    Banka, S. et al. Genotype-phenotype specificity in Menke–Hennekam syndrome caused by missense variants in exon 30 or 31 of CREBBP. Am. J. Med. Genet. A 179, 1058–1062 (2019).

    CAS  Google Scholar 

  67. 67.

    Steven, A. & Seliger, B. Control of CREB expression in tumours: from molecular mechanisms and signal transduction pathways to therapeutic target. Oncotarget 7, 35454–35465 (2015).

    Google Scholar 

  68. 68.

    Wang, H., Xu, J., Lazarovici, P., Quirion, R. & Zheng, W. cAMP response element-binding protein (CREB): a possible signaling molecule link in the pathophysiology of schizophrenia. Front. Mol. Neurosci. 11, 255 (2018).

    PubMed  PubMed Central  Google Scholar 

  69. 69.

    Belmaker, R. H. & Agam, G. Major depressive disorder. N. Engl. J. Med. 358, 55–68 (2008).

    CAS  Google Scholar 

  70. 70.

    Schiedel, M. et al. Chemical epigenetics: the Impact of chemical and chemical biology techniques on bromodomain target validation. Angew. Chem. Int. Ed. 58, 17930–17952 (2019).

    CAS  Google Scholar 

  71. 71.

    Reubi, J. C., Mäcke, H. R. & Krenning, E. P. Candidates for peptide receptor radiotherapy today and in the future. J. Nucl. Med. 46, 67S–75S (2005).

    CAS  Google Scholar 

  72. 72.

    Reubi, J. C. et al. SST3-selective potent peptidic somatostatin receptor antagonists. Proc. Natl Acad. Sci. USA 97, 13973–13978 (2000).

    CAS  Google Scholar 

  73. 73.

    Rybak, J. N. et al. In vivo protein biotinylation for identification of organ-specific antigens accessible from the vasculature. Nat. Methods 2, 291–298 (2005).

    CAS  Google Scholar 

  74. 74.

    Bodenmiller, B. et al. Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators. Nat. Biotechnol. 30, 858–867 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75.

    Parker, C. G. et al. Ligand and target discovery by fragment-based screening in human cells. Cell 168, 527–541.e529 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  76. 76.

    Krall, N., Scheuermann, J. & Neri, D. Small targeted cytotoxics: current state and promises from DNA-encoded chemical libraries. Angew. Chem. Int. Ed. 52, 1384–1402 (2013).

    CAS  Google Scholar 

  77. 77.

    Maude, S. L. et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N. Engl. J. Med. 378, 439–448 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78.

    Lee, Y. G. et al. Regulation of CAR T cell-mediated cytokine release syndrome-like toxicity using low molecular weight adapters. Nat. Commun. 10, 2681 (2019).

    PubMed  PubMed Central  Google Scholar 

  79. 79.

    Krall, N. et al. A small-molecule drug conjugate for the treatment of carbonic anhydrase IX expressing tumours. Angew. Chem. Int. Ed. 53, 4231–4235 (2014).

    CAS  Google Scholar 

  80. 80.

    Lindner, T. et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J. Nucl. Med. 59, 1415–1422 (2018).

    CAS  Google Scholar 

  81. 81.

    Loktev, A. et al. Development of fibroblast activation protein-targeted radiotracers with improved tumour retention. J. Nucl. Med. 60, 1421–1429 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Giesel, F. L. et al. 68Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J. Nucl. Med. 60, 386–392 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83.

    Silacci, M. et al. Human monoclonal antibodies to domain C of tenascin-C selectively target solid tumours in vivo. Protein Eng. Des. Sel. 19, 471–478 (2006).

    CAS  Google Scholar 

  84. 84.

    Schliemann, C. et al. Three clinical-stage tumour targeting antibodies reveal differential expression of oncofetal fibronectin and tenascin-C isoforms in human lymphoma. Leuk. Res. 33, 1718–1722 (2009).

    CAS  Google Scholar 

  85. 85.

    Li, Y. et al. Optimized reaction conditions for amide bond formation in DNA-encoded combinatorial libraries. ACS Comb. Sci. 18, 438–443 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86.

    Franzini, R. M. et al. Identification of structure–activity relationships from screening a structurally compact DNA-encoded chemical library. Angew. Chem. Int. Ed. 54, 3927–3931 (2015).

    CAS  Google Scholar 

  87. 87.

    Decurtins, W. et al. Automated screening for small organic ligands using DNA-encoded chemical libraries. Nat. Protocols 11, 764–780 (2016).

    CAS  Google Scholar 

  88. 88.

    Myburgh, R. et al. Anti-human CD117 CAR T-cells efficiently eliminate healthy and malignant CD117-expressing hematopoietic cells. Leukemia 34, 2688–2703 (2020).

    CAS  Google Scholar 

Download references


We acknowledge financial support from the ETH Zürich, the Swiss National Science Foundation (grant no. 310030_182003/1), the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (grant agreement 670603), the Federal Commission for Technology and Innovation (KTI, grant no. 12803.1 VOUCH-LS), the Clinical Research Priority Program ‘ImmunoCure’ of the University of Zurich to M.G.M. and D.N., a University Research Priority Project Translational Cancer Research grant to R.M., a Swiss Cancer Research grant to M.G.M. and D.N. (KFS-3846-02-2016) and the National Cancer Institute (R35 CA197582 to P.K.V.) (TSRI ms. no. 29970). Work in the Sartori laboratory is supported by the Swiss National Science Foundation (grant no. 31003A_176161) and the Swiss Cancer Research Foundation (grant no. KFS-4702-02-2019). M.M. thanks the EPSRC Centre for Doctoral Training in Synthesis for Biology and Medicine (EP/L015838/1) for studentship support, supported by AstraZeneca, Diamond Light Source, Defence Science and Technology Laboratory, Evotec, GlaxoSmithKline, Janssen, Novartis, Pfizer, Syngenta, Takeda, UCB and Vertex. S.J.C. thanks St Hugh’s College for research funding. We further thank D. Bianchi and C. Harvey for the synthesis of some of the molecules described in this article and M. Catalano for providing the anti-FITC antibody used in the ELISA procedures. We thank A. Martinelli for his help with data evaluation and we are most grateful to B. Pfeiffer for help with the NMR measurements. We are also grateful to the Functional Genomics Center Zurich for help with high-throughput DNA sequencing. Instant JChem (ChemAxon) was used for the structure and data management (

Author information




N.F., J.S. and D.N. designed the project. N.F. constructed the library. N.F. and G.B. performed the affinity selections and analysed the HT-sequencing results. J.S. helped with the evaluation of HT-sequencing. C.P. performed the FACS and UniCAR-T killing assay experiments. J.M. and S.C. performed ex vivo experiments on SK-RC-52 positive mice. R.D.L. produced the hTNC and mTNC. S.Y. and P.K.V. constructed the expression vectors for the PI3K proteins and carried out the large-scale production in insect cells and the purification of these proteins. A.T., N.L.M. and A.A.S. produced CtIP proteins. R.M. and M.G.M. were involved in the cloning of the UniCAR plasmid. M.M. and S.J.C. produced CREBBP and BRD4(1) proteins. N.F. performed the resynthesis and the validation of all hit compounds. The manuscript was written with contributions from all the authors. The manuscript was written by N.F., R.A.L., J.S., D.N. and corrected by all the authors.

Corresponding authors

Correspondence to Jörg Scheuermann or Dario Neri.

Ethics declarations

Competing interests

D.N. is co-founder and shareholder of Philochem AG (, a company active in the field of DELs.

Additional information

Peer review information Nature Chemistry thanks Andreas Brunschweige, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35, Tables 1–8, abbreviations, additional materials and general methods, scaffold and library synthesis details, affinity selection results, hit re-synthesis and validation, lists of the two sets of building blocks used for DEL construction, 1H- and 13C NMR data, LC-MS data and references.

Reporting Summary

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Favalli, N., Bassi, G., Pellegrino, C. et al. Stereo- and regiodefined DNA-encoded chemical libraries enable efficient tumour-targeting applications. Nat. Chem. 13, 540–548 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing