Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C60

Abstract

Molecular Russian dolls (matryoshkas) have proven useful for testing the limits of preparative supramolecular chemistry but applications of these architectures to problems in other fields are elusive. Here we report a three-shell, matryoshka-like complex—in which C60 sits inside a cycloparaphenylene nanohoop, which in turn is encapsulated inside a self-assembled nanocapsule—that can be used to address a long-standing challenge in fullerene chemistry, namely the selective formation of a particular fullerene bis-adduct. Spectroscopic evidence indicates that the ternary complex is sufficiently stable in solution for the two outer shells to affect the addition chemistry of the fullerene guest. When the complex is subjected to Bingel cyclopropanation conditions, the exclusive formation of a single trans-3 fullerene bis-adduct was observed in a reaction that typically yields more than a dozen products. The selectivity facilitated by this matryoshka-like approach appears to be a general phenomenon and could be useful for applications where regioisomerically pure C60 bis-adducts have been shown to have superior properties compared with isomer mixtures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Strategies reported for the regioselective synthesis of C60 adducts.
Fig. 2: Synthesis of the tetragonal prismatic nanocapsules used and encapsulation of C60[10]CPP.
Fig. 3: Structural characterization of the matryoshka-like ensemble and its reactivity towards selective formation of Bingel trans-3 bis-adducts.
Fig. 4: Crystal structure of the encapsulated trans-3 bis-adducts and void analysis study on the impact of the different bis-adduct sterics.

Data availability

All data generated or analysed during this study are included in this published article (and its supplementary information files). Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1984575 (C60[10]CPP7·(BArF)8), 1984576 (trans-3-(1-C60)[10]CPP6·(BArF)8) and 1984937 ([Cu2(Me2pTp)(OTf)2](OTf)2). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. 1.

    He, Y. & Li, Y. Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 13, 1970–1983 (2011).

    CAS  PubMed  Google Scholar 

  2. 2.

    Mishra, A. & Bäuerle, P. Small molecule organic semiconductors on the move: promises for future solar energy technology. Angew. Chem. Int. Ed. 51, 2020–2067 (2012).

    CAS  Google Scholar 

  3. 3.

    Mazzio, K. A. & Luscombe, C. K. The future of organic photovoltaics. Chem. Soc. Rev. 44, 78–90 (2015).

    CAS  PubMed  Google Scholar 

  4. 4.

    Ragoussi, M.-E. & Torres, T. New generation solar cells: concepts, trends and perspectives. Chem. Commun. 51, 3957–3972 (2015).

    CAS  Google Scholar 

  5. 5.

    Inganäs, O. Organic photovoltaics over three decades. Adv. Mater. 30, 1800388 (2018).

    Google Scholar 

  6. 6.

    Deng, L.-L., Xie, S.-Y. & Gao, F. Fullerene-based materials for photovoltaic applications: toward efficient, hysteresis-free, and stable perovskite solar cells. Adv. Electron. Mater. 4, 1700435 (2018).

    Google Scholar 

  7. 7.

    Muñoz, A. et al. Synthesis of giant globular multivalent glycofullerenes as potent inhibitors in a model of Ebola virus infection. Nat. Chem. 8, 50–57 (2015).

    Google Scholar 

  8. 8.

    Nierengarten, J.-F. et al. Giant glycosidase inhibitors: first- and second-generation fullerodendrimers with a dense iminosugar shell. Chem. Eur. J. 24, 2483–2492 (2018).

    CAS  PubMed  Google Scholar 

  9. 9.

    Hirsch, A. & Brettreich, M. Fullerenes, Chemistry and Reactions (Wiley-VCH, 2005).

  10. 10.

    Fuertes-Espinosa, C., Pujals, M. & Ribas, X. Supramolecular purification and regioselective functionalization of fullerenes and endohedral metallofullerenes. Chem 6, 3219–3262 (2020).

    CAS  Google Scholar 

  11. 11.

    Djojo, F., Herzog, A., Lamparth, I., Hampel, F. & Hirsch, A. Regiochemistry of twofold additions to [6,6] bonds in C60: influence of the addend-independent cage distortion in 1,2-monoadducts. Chem. Eur. J. 2, 1537–1547 (1996).

    CAS  Google Scholar 

  12. 12.

    Hirsch, A., Lamparth, I. & Karfunkel, H. R. Fullerene chemistry in three dimensions: isolation of seven regioisomeric bisadducts and chiral trisadducts of C60 and di(ethoxycarbonyl)methylene. Angew. Chem. Int. Ed. 33, 437–438 (1994).

    Google Scholar 

  13. 13.

    Lenes, M. et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells. Adv. Mater. 20, 2116–2119 (2008).

    CAS  Google Scholar 

  14. 14.

    Shi, W. et al. Purification and electronic characterisation of 18 isomers of the OPV acceptor material bis-[60]PCBM. Chem. Commun. 53, 975–978 (2017).

    CAS  Google Scholar 

  15. 15.

    Cao, T. et al. Towards a full understanding of regioisomer effects of indene-C60 bisadduct acceptors in bulk heterojunction polymer solar cells. J. Mater. Chem. A 5, 10206–10219 (2017).

    CAS  Google Scholar 

  16. 16.

    Zhang, F. et al. Isomer-pure bis-PCBM-assisted crystal engineering of perovskite solar cells showing excellent efficiency and stability. Adv. Mater. 29, 1606806 (2017).

    Google Scholar 

  17. 17.

    Umeyama, T. & Imahori, H. Isomer effects of fullerene derivatives on organic photovoltaics and perovskite solar cells. Acc. Chem. Res. 52, 2046–2055 (2019).

    CAS  PubMed  Google Scholar 

  18. 18.

    Isaacs, L., Diederich, F. & Haldimann, R. F. Multiple adducts of C60 by tether-directed remote functionalization and synthesis of soluble derivatives of new carbon allotropes Cn(60+5). Helv. Chim. Acta 80, 317–342 (1997).

    CAS  Google Scholar 

  19. 19.

    Isaacs, L., Haldimann, R. F. & Diederich, F. Tether-directed remote functionalization of buckminsterfullerene: regiospecific hexaadduct formation. Angew. Chem. Int. Ed. 33, 2339–2342 (1994).

    Google Scholar 

  20. 20.

    Ðorđević, L. et al. Light-controlled regioselective synthesis of fullerene bis-adducts. Angew. Chem. Int. Ed. 60, 313–320 (2021).

    Google Scholar 

  21. 21.

    Qian, W. & Rubin, Y. Complete control over addend permutation at all six pseudooctahedral positions of fullerene C60. J. Am. Chem. Soc. 122, 9564–9565 (2000).

    CAS  Google Scholar 

  22. 22.

    Beuerle, F. & Hirsch, A. Synthesis and orthogonal functionalization of [60]fullerene e,e,e-trisadducts with two spherically defined addend zones. Chem. Eur. J. 15, 7434–7446 (2009).

    CAS  PubMed  Google Scholar 

  23. 23.

    Beuerle, F., Chronakis, N. & Hirsch, A. Regioselective synthesis and zone selective deprotection of [60]fullerene tris-adducts with an e,e,e addition pattern. Chem. Commun. 3676–3678 (2005).

  24. 24.

    Kräutler, B. et al. A topochemically controlled, regiospecific fullerene bisfunctionalization. Angew. Chem. Int. Ed. 35, 1204–1206 (1996).

    Google Scholar 

  25. 25.

    Schwenninger, R., Müller, T. & Kräutler, B. Concise route to symmetric multiadducts of [60]fullerene: preparation of an equatorial tetraadduct by orthogonal transposition. J. Am. Chem. Soc. 119, 9317–9318 (1997).

    CAS  Google Scholar 

  26. 26.

    Ortiz, A. L. & Echegoyen, L. Unexpected and selective formation of an (e,e,e,e)-tetrakis-[60]fullerene derivative via electrolytic retro-cyclopropanation of a D2h-hexakis-[60]fullerene adduct. J. Mater. Chem. 21, 1362–1364 (2011).

    CAS  Google Scholar 

  27. 27.

    Hörmann, F., Donaubauer, W., Hampel, F. & Hirsch, A. Efficient synthesis of C2v-symmetrical pentakisadducts of C60 as versatile building blocks for fullerene architectures that involve a mixed octahedral addition pattern. Chem. Eur. J. 18, 3329–3337 (2012).

    PubMed  Google Scholar 

  28. 28.

    Yoshizawa, M., Klosterman, J. K. & Fujita, M. Functional molecular flasks: new properties and reactions within discrete, self-assembled hosts. Angew. Chem. Int. Ed. 48, 3418–3438 (2009).

    CAS  Google Scholar 

  29. 29.

    Brenner, W., Ronson, T. K. & Nitschke, J. R. Separation and selective formation of fullerene adducts within an MII8L6 cage. J. Am. Chem. Soc. 139, 75–78 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Huang, N. et al. Tailor-made pyrazolide-based metal–organic frameworks for selective catalysis. J. Am. Chem. Soc. 140, 6383–6390 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Chen, B., Holstein, J. J., Horiuchi, S., Hiller, W. G. & Clever, G. H. Pd(ii) coordination sphere engineering: pyridine cages, quinoline bowls, and heteroleptic pills binding one or two fullerenes. J. Am. Chem. Soc. 141, 8907–8913 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Leonhardt, V., Fimmel, S., Krause, A.-M. & Beuerle, F. A covalent organic cage compound acting as a supramolecular shadow mask for the regioselective functionalization of C60. Chem. Sci. 11, 8409–8415 (2020).

    CAS  Google Scholar 

  33. 33.

    Bottari, G. et al. Regio-, stereo-, and atropselective synthesis of C60 fullerene bisadducts by supramolecular-directed functionalization. Angew. Chem. Int. Ed. 55, 11020–11025 (2016).

    CAS  Google Scholar 

  34. 34.

    Iwamoto, T., Watanabe, Y., Sadahiro, T., Haino, T. & Yamago, S. Size-selective encapsulation of C60 by [10]cycloparaphenylene: formation of the shortest fullerene-peapod. Angew. Chem. Int. Ed. 50, 8342–8344 (2011).

    CAS  Google Scholar 

  35. 35.

    Xia, J., Bacon, J. W. & Jasti, R. Gram-scale synthesis and crystal structures of [8]- and [10]CPP, and the solid-state structure of C60@[10]CPP. Chem. Sci. 3, 3018–3021 (2012).

    CAS  Google Scholar 

  36. 36.

    Xu, Y. et al. A supramolecular [10]CPP junction enables efficient electron transfer in modular porphyrin–[10]CPPfullerene complexes. Angew. Chem. Int. Ed. 57, 11549–11553 (2018).

    CAS  Google Scholar 

  37. 37.

    Rio, J. et al. Electronic communication between two [10]cycloparaphenylenes and bis(azafullerene) (C59N)2 induced by cooperative complexation. Angew. Chem. Int. Ed. 57, 6930–6934 (2018).

    CAS  Google Scholar 

  38. 38.

    Xu, Y. & von Delius, M. The supramolecular chemistry of strained carbon nanohoops. Angew. Chem. Int. Ed. 59, 559–573 (2020).

    CAS  Google Scholar 

  39. 39.

    Xu, Y. et al. Concave–convex π–π template approach enables the synthesis of [10]cycloparaphenylene–fullerene [2]rotaxanes. J. Am. Chem. Soc. 140, 13413–13420 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Fuertes-Espinosa, C. et al. Supramolecular fullerene sponges as catalytic masks for regioselective functionalization of C60. Chem 6, 169–186 (2020).

    CAS  Google Scholar 

  41. 41.

    Kawase, T., Tanaka, K., Shiono, N., Seirai, Y. & Oda, M. Onion-type complexation based on carbon nanorings and a buckminsterfullerene. Angew. Chem. Int. Ed. 43, 1722–1724 (2004).

    CAS  Google Scholar 

  42. 42.

    Rousseaux, S. A. L. et al. Self-assembly of Russian doll concentric porphyrin nanorings. J. Am. Chem. Soc. 137, 12713–12718 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Cai, K. et al. Molecular Russian dolls. Nat. Commun. 9, 5275 (2018).

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Zhang, D. et al. Enantiopure [Cs+/Xecryptophane]FeII4L4 hierarchical superstructures. J. Am. Chem. Soc. 141, 8339–8345 (2019).

    CAS  PubMed  Google Scholar 

  45. 45.

    García-Simón, C. et al. Sponge-like molecular cage for purification of fullerenes. Nat. Commun. 5, 5557 (2014).

    PubMed  Google Scholar 

  46. 46.

    Fuertes-Espinosa, C. et al. Purification of uranium-based endohedral metallofullerenes (EMFs) by selective supramolecular encapsulation and release. Angew. Chem. Int. Ed. 57, 11294–11299 (2018).

    CAS  Google Scholar 

  47. 47.

    Park, K. et al. Synthesis of symmetrical and unsymmetrical diarylalkynes from propiolic acid using palladium-catalyzed decarboxylative coupling. J. Org. Chem. 75, 6244–6251 (2010).

    CAS  PubMed  Google Scholar 

  48. 48.

    Brynn Hibbert, D. & Thordarson, P. The death of the Job plot, transparency, open science and online tools, uncertainty estimation methods and other developments in supramolecular chemistry data analysis. Chem. Commun. 52, 12792–12805 (2016).

    CAS  Google Scholar 

  49. 49.

    Thordarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    CAS  PubMed  Google Scholar 

  50. 50.

    Thordarson, P. et al. Allosterically driven multicomponent assembly. Angew. Chem. Int. Ed. 43, 4755–4759 (2004).

    CAS  Google Scholar 

  51. 51.

    Rizzuto, F. J. & Nitschke, J. R. Stereochemical plasticity modulates cooperative binding in a CoII12L6 cuboctahedron. Nat. Chem. 9, 903–908 (2017).

    CAS  PubMed  Google Scholar 

  52. 52.

    García-Simón, C. et al. Complete dynamic reconstruction of C60, C70, and (C59N)2 encapsulation into an adaptable supramolecular nanocapsule. J. Am. Chem. Soc. 142, 16051–16063 (2020).

    PubMed  Google Scholar 

  53. 53.

    Dannhäuser, J. et al. σ-donor and π-acceptor stacking interactions in a trans-2-linked C60–cobalt(ii) tetraphenylporphyrin diad. Angew. Chem. Int. Ed. 45, 3368–3372 (2006).

    Google Scholar 

  54. 54.

    Matsuno, T., Nakai, Y., Sato, S., Maniwa, Y. & Isobe, H. Ratchet-free solid-state inertial rotation of a guest ball in a tight tubular host. Nat. Commun. 9, 1907 (2018).

    PubMed  PubMed Central  Google Scholar 

  55. 55.

    Mecozzi, S. & Rebek, J. J. The 55% solution: a formula for molecular recognition in the liquid state. Chem. Eur. J. 4, 1016–1022 (1998).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from MINECO-Spain (CTQ2016-77989-P and PID2019-104498GB-I00 to X.R., RTI2018-095622-B-100 to D.M. and I.I., and EUR2019-103824 to F.G.), Generalitat de Catalunya (2017SGR264 and a PhD grant to C.F.-E.) and the Severo Ochoa Center of Excellence Program (Catalan Institute of Nanoscience and Nanotechnology, grant SEV-2017-0706). X.R. is also grateful for ICREA-Acadèmia awards. M.v.D. is grateful for financial support from the Deutsche Forschungsgemeinschaft (project number 182849149-SFB953 ‘Synthetic Carbon Allotropes’), the Fonds der Chemischen Industrie (FCI), the University of Ulm and the Deutscher Akademischer Austauschdienst (PhD fellowship to O.B.). E.U. thanks Universitat de Girona for a PhD grant and we thank Serveis Tècnics de Recerca, Universitat de Girona for technical support. We thank A. Lledó for artwork assistance and H. Maid (Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany) for assistance with cryoprobe NMR spectroscopy.

Author information

Affiliations

Authors

Contributions

E.U., C.F.-E. and C.G.-S. performed all self-assembly as well as fullerene functionalization experiments and isolated all products. O.B. performed all spectroscopic host–guest titrations and analysed the results with M.v.D. Y.X. synthesized a batch of [10]CPP and the bromomalonate Bingel reagents. L.G. provided technical assistance on HRMS studies. J.J., I.I., F.G. and D.M. technically assisted, performed and solved the XRD structure of C60[10]CPP7·(BArF)8 and trans-3-(1-C60)[10]CPP7·(BArF)8 at the ALBA synchrotron. M.v.D., C.F. and X.R. conceived the project idea. M.v.D and X.R. wrote the manuscript. X.R. directed the project.

Corresponding authors

Correspondence to Max von Delius or Xavi Ribas.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks T. Barendt, E. Peris and the other, anonymous reviewer(s), for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Self-assembled tetragonal prismatic nanocapsules.

Self-assembly of the Zn-TCPP and the bimetallic macrocyclic clips [M2(Me2p)]4+, [M2(Me2pp)]4+ and [M2(Me2pTp)]4+, to afford the corresponding tetragonal prismatic nanocapsules with increasing cavity-size, that is, 3·(BArF)8, 4·(BArF)8, 5·(BArF)8, 6·(BArF)8, 7·(BArF)8.

Supplementary information

Supplementary Information

Supplementary Figs. 1–96 and Tables 1–17.

Supplementary Data

CIF file for clip complex [Cu2(Me2pTp)(OTf)2](OTf)2 (CCDC reference 1984937).

Supplementary Data

CIF file for C60[10]CPP7·(BArF)8 (CCDC reference 1984575).

Supplementary Data

CIF file for trans-3-(1-C60)[10]CPP7·(BArF)8 (CCDC reference 1984576).

Supplementary Video

Video summary of the article, containing the video representation of the matryoshka-like crystal structure and the selectivity for the trans-3 C60 bis-adduct.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ubasart, E., Borodin, O., Fuertes-Espinosa, C. et al. A three-shell supramolecular complex enables the symmetry-mismatched chemo- and regioselective bis-functionalization of C60. Nat. Chem. 13, 420–427 (2021). https://doi.org/10.1038/s41557-021-00658-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing