Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Immobilization of molecular catalysts on electrode surfaces using host–guest interactions

Abstract

Anchoring molecular catalysts on electrode surfaces combines the high selectivity and activity of molecular systems with the practicality of heterogeneous systems. Molecular catalysts, however, are far less stable than traditional heterogeneous electrocatalysts, and therefore a method to easily replace anchored molecular catalysts that have degraded could make such electrosynthetic systems more attractive. Here we applied a non-covalent ‘click’ chemistry approach to reversibly bind molecular electrocatalysts to electrode surfaces through host–guest complexation with surface-anchored cyclodextrins. The host–guest interaction is remarkably strong and enables the flow of electrons between the electrode and the guest catalyst. Electrosynthesis in both organic and aqueous media was demonstrated on metal oxide electrodes, with stability on the order of hours. The catalytic surfaces can be recycled by controlled release of the guest from the host cavities and the readsorption of fresh guest.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Chemical structures of host and guest molecules.
Fig. 2: Calculated host and host–guest structures on gold.
Fig. 3: Surface analysis of HGCs by TERS.
Fig. 4: Electrocatalytic ammonia oxidation by HGCs.
Fig. 5: XPS surface analysis demonstrates host stability.

Data availability

The source data for the figures in the main text and Supplementary Information are available on DataDryad (https://doi.org/10.5061/dryad.6t1g1jwxr). Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1996726 (2), 1996727 (3) and 1976728 (4). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/.

References

  1. 1.

    Brazzolotto, D. et al. Nickel-centred proton reduction catalysis in a model of [NiFe] hydrogenase. Nat. Chem. 8, 1054–1060 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2.

    Ren, S. et al. Molecular electrocatalysts can mediate fast, selective CO2 reduction in a flow cell. Science 365, 367–369 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  3. 3.

    Nam, D. H. et al. Molecular enhancement of heterogeneous CO2 reduction. Nat. Mater. 19, 266–276 (2020).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. 4.

    Rosser, T. E., Gross, M. A., Lai, Y. H. & Reisner, E. Precious-metal free photoelectrochemical water splitting with immobilised molecular Ni and Fe redox catalysts. Chem. Sci. 7, 4024–4035 (2016).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Sun, L., Reddu, V., Fisher, A. C. & Wang, X. Electrocatalytic reduction of carbon dioxide: opportunities with heterogeneous molecular catalysts. Energy Environ. Sci. 13, 374–403 (2020).

    CAS  Article  Google Scholar 

  6. 6.

    Wang, M. et al. CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine. Nat. Commun. 10, 3602 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  7. 7.

    Zhang, B. & Sun, L. Artificial photosynthesis: opportunities and challenges of molecular catalysts. Chem. Soc. Rev. 48, 2216–2264 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  8. 8.

    Materna, K. L., Crabtree, R. H. & Brudvig, G. W. Anchoring groups for photocatalytic water oxidation on metal oxide surfaces. Chem. Soc. Rev. 46, 6099–6110 (2017).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  9. 9.

    Hanna, C. M., Luu, A. & Yang, J. Y. Proton-coupled electron transfer at anthraquinone modified indium tin oxide electrodes. ACS Appl. Energy Mater. 2, 59–65 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Creus, J. et al. A million turnover molecular anode for catalytic water oxidation. Angew. Chem. Int. Ed. 55, 15382–15386 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Ashford, D. L. et al. Water oxidation by an electropolymerized catalyst on derivatized mesoporous metal oxide electrodes. J. Am. Chem. Soc. 136, 6578–6581 (2014).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Liu, Y. & McCrory, C. C. L. Modulating the mechanism of electrocatalytic CO2 reduction by cobalt phthalocyanine through polymer coordination and encapsulation. Nat. Commun. 10, 1683 (2019).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. 13.

    Krawicz, A. et al. Photofunctional construct that interfaces molecular cobalt-based catalysts for H2 production to a visible-light-absorbing semiconductor. J. Am. Chem. Soc. 135, 11861–11868 (2013).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Schreiber, C. L. & Smith, B. D. Molecular conjugation using non-covalent click chemistry. Nat. Rev. Chem. 3, 393–400 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Rojas, M. T., Kaifer, A. E., Königer, R. & Stoddart, J. F. Supported monolayers containing preformed binding sites. Synthesis and interfacial binding properties of a thiolated β-cyclodextrin derivative. J. Am. Chem. Soc. 117, 336–343 (1995).

    CAS  Article  Google Scholar 

  16. 16.

    Beulen, M. W. J. et al. Host–guest interactions at self-assembled monolayers of cyclodextrins on gold. Chem. Eur. J. 6, 1176–1183 (2000).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  17. 17.

    Beulen, M. W. J. et al. Self-assembled monolayers of heptapodant β-cyclodextrins on gold. Langmuir 14, 6424–6429 (1998).

    CAS  Article  Google Scholar 

  18. 18.

    Méndez-Ardoy, A., Steentjes, T., Kudernac, T. & Huskens, J. Self-assembled monolayers on gold of β-cyclodextrin adsorbates with different anchoring groups. Langmuir 30, 3467–3476 (2014).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  19. 19.

    Liu, W., Zhang, Y. & Gao, X. Interfacial supramolecular self-assembled monolayers of C60 by thiolated β-cyclodextrin on gold surfaces via monoanionic C60. J. Am. Chem. Soc. 129, 4973–4980 (2007).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  20. 20.

    Freitag, M. & Galoppini, E. Molecular host–guest complexes: shielding of guests on semiconductor surfaces. Energy Environ. Sci. 4, 2482–2494 (2011).

    CAS  Article  Google Scholar 

  21. 21.

    Freitag, M. & Galoppini, E. Cucurbituril complexes of viologens bound to TiO2 films. Langmuir 26, 8262–8269 (2010).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Li, H. et al. Visible-light-driven water oxidation on a photoanode by supramolecular assembly of photosensitizer and catalyst. ChemPlusChem 81, 1056–1059 (2016).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  23. 23.

    Kim, H. J., Lee, M. H., Mutihac, L., Vicens, J. & Kim, J. S. Host–guest sensing by calixarenes on the surfaces. Chem. Soc. Rev. 41, 1173–1190 (2012).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Murray, J., Kim, K., Ogoshi, T., Yao, W. & Gibb, B. C. The aqueous supramolecular chemistry of cucurbit[n]urils, pillar[n]arenes and deep-cavity cavitands. Chem. Soc. Rev. 46, 2479–2496 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Méndez-Ardoy, A. et al. Electron-transfer rates in host–guest assemblies at β-cyclodextrin monolayers. Langmuir 33, 8614–8623 (2017).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  26. 26.

    Al-Soufi, W. et al. Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin. J. Am. Chem. Soc. 127, 8775–8784 (2005).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  27. 27.

    Domi, Y., Yoshinaga, Y., Shimazu, K. & Porter, M. D. Characterization and optimization of mixed thiol-derivatized β-cyclodextrin/pentanethiol monolayers with high-density guest-accessible cavities. Langmuir 25, 8094–8100 (2009).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Perl, A. et al. Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nat. Chem. 3, 317–322 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Chang, B. Y., Hong, S. Y., Yoo, J. S. & Park, S. M. Determination of electron transfer kinetic parameters by Fourier transform electrochemical impedance spectroscopic analysis. J. Phys. Chem. B 110, 19386–19392 (2006).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  30. 30.

    Lee, J.-Y. & Park, S.-M. Electrochemistry of guest molecules in thiolated cyclodextrin self-assembled monolayers: an implication for size-selective sensors. J. Phys. Chem. B 102, 9940–9945 (1998).

    CAS  Article  Google Scholar 

  31. 31.

    Habibzadeh, F., Miller, S. L., Hamann, T. W. & Smith, M. R. Homogeneous electrocatalytic oxidation of ammonia to N2 under mild conditions. Proc. Natl Acad. Sci. USA 116, 2849–2853 (2019).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. 32.

    Nakajima, K., Toda, H., Sakata, K. & Nishibayashi, Y. Ruthenium-catalysed oxidative conversion of ammonia into dinitrogen. Nat. Chem. 11, 702–709 (2019).

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Dunn, P. L., Johnson, S. I., Kaminsky, W. & Bullock, R. M. Diversion of catalytic C–N bond formation to catalytic oxidation of NH3 through modification of the hydrogen atom abstractor. J. Am. Chem. Soc. 142, 3361–3365 (2020).

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Adli, N. M., Zhang, H., Mukherjee, S. & Wu, G. Review—ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 165, J3130–J3147 (2018).

    CAS  Article  Google Scholar 

  35. 35.

    Sévery, L., Siol, S. & Tilley, S. Design of molecular water oxidation catalysts stabilized by ultrathin inorganic overlayers—is active site protection necessary? Inorganics 6, 105 (2018).

    Article  CAS  Google Scholar 

  36. 36.

    Hamai, S. Inclusion of methyl 2-naphthalenecarboxylate and dimethyl 2,3-, 2,6-, and 2,7-naphthalenedicarboxylates by cyclodextrins in aqueous solution. Bull. Chem. Soc. Jpn 83, 1489–1500 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Organero, J. A., Tormo, L. & Douhal, A. Caging ultrafast proton transfer and twisting motion of 1-hyroxyl-2-acetonapthone. Chem. Phys. Lett. 363, 409–414 (2002).

    CAS  Article  Google Scholar 

  38. 38.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & Vandevondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    CAS  Article  Google Scholar 

  39. 39.

    Jackson, M. N. et al. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. J. Am. Chem. Soc. 140, 1004–1010 (2018).

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Veerbeek, J., Méndez-Ardoy, A. & Huskens, J. Electrochemistry of redox-active guest molecules at β-cyclodextrin-functionalized silicon electrodes. ChemElectroChem 4, 1470–1477 (2017).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Cherevko, S., Topalov, A. A., Zeradjanin, A. R., Katsounaros, I. & Mayrhofer, K. J. J. Gold dissolution: towards understanding of noble metal corrosion. RSC Adv. 3, 16516–16527 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    Widrig, C. A., Chung, C. & Porter, M. D. The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J. Electroanal. Chem. 310, 335–359 (1991).

    CAS  Article  Google Scholar 

  43. 43.

    Wong, E. H. J., May, G. L. & Wilde, C. P. Oxidative desorption of thiols as a route to controlled formation of binary self assembled monolayer surfaces. Electrochim. Acta 109, 67–74 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Hashmi, A. S. K. & Hutchings, G. J. Gold catalysis. Angew. Chem. Int. Ed. 45, 7896–7936 (2006).

    Article  Google Scholar 

  45. 45.

    Bangle, R., Sampaio, R. N., Troian-Gautier, L. & Meyer, G. J. Surface grafting of Ru(ii) diazonium-based sensitizers on metal oxides enhances alkaline stability for solar energy conversion. ACS Appl. Mater. Interfaces 10, 3121–3132 (2018).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Ide, A. et al. Monitoring bisphosphonate surface functionalization and acid stability of hierarchically porous titanium zirconium oxides. Langmuir 27, 12985–12995 (2011).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Biggs, C. I., Edmondson, S. & Gibson, M. I. Thiol-ene immobilisation of carbohydrates onto glass slides as a simple alternative to gold–thiol monolayers, amines or lipid binding. Biomater. Sci. 3, 175–181 (2015).

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  48. 48.

    Wang, W. & Kaifer, A. E. Transfer of cationic cucurbit[7]uril inclusion complexes from water to non-aqueous solvents. Supramol. Chem. 22, 710–716 (2010).

    CAS  Article  Google Scholar 

  49. 49.

    Connors, K. A. The stability of cyclodextrin complexes in solution. Chem. Rev. 97, 1325–1358 (2002).

    Article  Google Scholar 

  50. 50.

    Seah, M. P., Gilmore, I. S. & Beamson, G. XPS: binding energy calibration of electron spectrometers 5—re‐evaluation of the reference energies. Surf. Interface Anal. 26, 642–649 (1998).

    CAS  Article  Google Scholar 

  51. 51.

    Zabka, W.-D. et al. Functionalization and passivation of ultrathin alumina films of defined sub-nanometer thickness with self-assembled monolayers. J. Phys. Condens. Matter 30, 424002 (2018).

    PubMed  Article  PubMed Central  Google Scholar 

  52. 52.

    Tanuma, S., Powell, C. J. & Penn, D. R. Calculations of electron inelastic mean free paths. V. Data for 14 organic compounds over the 50–2000 eV range. Surf. Interface Anal. 21, 165–176 (1994).

    CAS  Article  Google Scholar 

  53. 53.

    Scofield, J. H. Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectros. Relat. Phenom. 8, 129–137 (1976).

    CAS  Article  Google Scholar 

  54. 54.

    Goedecker, S. & Teter, M. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    CAS  Article  Google Scholar 

  55. 55.

    VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  56. 56.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  57. 57.

    Sabatini, R., Gorni, T. & De Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 87, 041108 (2013).

    Article  CAS  Google Scholar 

  58. 58.

    Heyd, J., Scuseria, G. E. & Ernzerhof, M. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118, 8207–8215 (2003).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

S.D.T. thanks the University of Zurich, the University Research Priority Program LightChEC and the Swiss National Science Foundation (PYAPP2 160586) for funding. J.O. also acknowledges funding from the LightChEC. G.T., C.C., F.B.N. and M.I. thank the Swiss National Supercomputing Centre (CSCS) for generous resources under the Project IDs uzh1 and s965. C.C. thanks the INSPIRE potential master fellowship supported by the SNSF NCCR-MARVEL. G.T. thanks the Swiss National Science Foundation (Sinergia Grant No. CRSII2_160801). The authors thank T. Fox for the measurements of the solid-state NMR spectra. T. Moehl is thanked for assistance and fitting of the impedance data.

Author information

Affiliations

Authors

Contributions

L.S. and S.D.T. conceived the project. L.S. performed the synthesis, electrochemical and catalytic experiments. I.T. assisted with the synthesis and electrochemical experiments. J.S. and R.Z. conducted and evaluated the TERS experiments. M.T. and J.O. conducted and evaluated the XPS and STM experiments. O.B. measured and refined the crystal structures. G.T., C.C., F.B.N. and M.I. designed, conducted and evaluated the calculations. L.S. and S.D.T. wrote the manuscript. All the authors contributed to discussions of the results and revisions of the manuscript.

Corresponding author

Correspondence to S. David Tilley.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Arnold Rheingold, Javier Concepcion and the other anonymous reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–36, Experimental procedures and NMR spectra.

Supplementary Data 1

Cif file for complex 2.

Supplementary Data 2

Cif file for complex 3.

Supplementary Data 3

Cif file for complex 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sévery, L., Szczerbiński, J., Taskin, M. et al. Immobilization of molecular catalysts on electrode surfaces using host–guest interactions. Nat. Chem. (2021). https://doi.org/10.1038/s41557-021-00652-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing