Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrochemically driven desaturation of carbonyl compounds


Electrochemical techniques have long been heralded for their innate sustainability as efficient methods to achieve redox reactions. Carbonyl desaturation, as a fundamental organic oxidation, is an oft-employed transformation to unlock adjacent reactivity through the formal removal of two hydrogen atoms. To date, the most reliable methods to achieve this seemingly trivial reaction rely on transition metals (Pd or Cu) or stoichiometric reagents based on I, Br, Se or S. Here we report an operationally simple pathway to access such structures from enol silanes and phosphates using electrons as the primary reagent. This electrochemically driven desaturation exhibits a broad scope across an array of carbonyl derivatives, is easily scalable (1–100 g) and can be predictably implemented into synthetic pathways using experimentally or computationally derived NMR shifts. Systematic comparisons to state-of-the-art techniques reveal that this method can uniquely desaturate a wide array of carbonyl groups. Mechanistic interrogation suggests a radical-based reaction pathway.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: α,β-desaturation of carbonyl and enol compounds, state-of-the-art and design of this work.
Fig. 2: Scale-up and mechanistic study of EDD reaction.
Fig. 3: Gaussian computational experiment to assess the feasibility of the EDD reaction; case study of TMS- enolates.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the article and its Supplementary Information.


  1. Muzart, J. One‐pot syntheses of α,β‐unsaturated carbonyl compounds through palladium‐mediated dehydrogenation of ketones, aldehydes, esters, lactones and amides. Eur. J. Org. Chem. 20, 3779–3790 (2010).

    Article  Google Scholar 

  2. Otera, J. Modern Carbonyl Chemistry. (Wiley-VCH, 2000).

  3. Turlik, A., Chen, Y. & Newhouse, T. R. Dehydrogenation adjacent to carbonyls using palladium–allyl intermediates. Synlett 27, 331–336 (2016).

    CAS  Google Scholar 

  4. Reich, H. J., Reich, I. L. & Renga, J. M. Organoselenium chemistry: ɑ-phenylseleno carbonyl compounds as precursors for ɑ,β-unsaturated ketones and esters. J. Am. Chem. Soc. 95, 5813–5815 (1973).

    Article  CAS  Google Scholar 

  5. Sharpless, K. B. & Gordon, K. M. Selenium dioxide oxidation of ketones and aldehydes. Evidence for the intermediacy of β-ketoseleninic. J. Am. Chem. Soc. 98, 300–301 (1976).

    Article  CAS  Google Scholar 

  6. Trost, B. M., Salzmann, T. N. & Hiroi, K. New synthetic reactions. Sulfenylations and dehydrosulfenylations of esters and ketones. J. Am. Chem. Soc. 98, 4887–4902 (1976).

    Article  CAS  Google Scholar 

  7. Trost, B. M. & Salzmann, T. N. New synthetic reactions. Sulfenylation–dehydrosulfenylation as a method for introduction of unsaturation. J. Am. Chem. Soc. 95, 6840–6842 (1973).

    Article  CAS  Google Scholar 

  8. Larock, R. C. Comprehensive Organic Transformations 129–131 (VCH Publishers, 1989).

  9. Ito, Y., Hirao, T. & Saegusa, T. Synthesis of α,β-unsaturated carbonyl compounds by palladium (II)-catalyzed dehydrosilylation of silyl enol ethers. J. Org. Chem. 43, 1011–1013 (1978).

    Article  CAS  Google Scholar 

  10. Shimizu, I. & Tsuji, J. Palladium-catalyzed decarboxylation–dehydrogenation of allyl β-keto carboxylates and allyl enol carbonates as a novel synthetic method for α-substituted α,β-unsaturated ketones. J. Am. Chem. Soc. 104, 5844–5846 (1982).

    Article  CAS  Google Scholar 

  11. Diao, T. & Stahl, S. S. Synthesis of cyclic enones via direct palladium-catalyzed aerobic dehydrogenation of ketones. J. Am. Chem. Soc. 133, 14566–14569 (2011).

    Article  CAS  Google Scholar 

  12. Nicolaou, K. C., Zhong, Y. L. & Baran, P. S. A new method for the one-step synthesis of α,β-unsaturated carbonyl systems from saturated alcohols and carbonyl compounds. J. Am. Chem. Soc. 122, 7596–7597 (2000).

    Article  CAS  Google Scholar 

  13. Nicolaou, K. C., Montagnon, T., Baran, P. S. & Zhong, Y. L. Iodine(v) reagents in organic synthesis. Part 4. o-Iodoxybenzoic acid as a chemospecific tool for single electron transfer-based oxidation processes. J. Am. Chem. Soc. 124, 2245–2258 (2002).

    Article  CAS  Google Scholar 

  14. Chen, Y., Romaire, J. P. & Newhouse, T. R. Palladium-catalyzed α,β-dehydrogenation of esters and nitriles. J. Am. Chem. Soc. 137, 5875–5878 (2015).

    Article  CAS  Google Scholar 

  15. Huang, D., Zhao, Y. & Newhouse, T. R. Synthesis of cyclic enones by allyl-palladium-catalyzed α,β-dehydrogenation. Org. Lett. 20, 684–687 (2018).

    Article  CAS  Google Scholar 

  16. Chen, Y., Turlik, A. & Newhouse, T. R. Amide α,β-dehydrogenation using allyl-palladium catalysis and a hindered monodentate anilide. J. Am. Chem. Soc. 138, 1166–1169 (2016).

    Article  CAS  Google Scholar 

  17. Huang, D., Szewczyk, S. M., Zhang, P. & Newhouse, T. R. Allyl-nickel catalysis enables carbonyl dehydrogenation and oxidative cycloalkenylation of ketones. J. Am. Chem. Soc. 141, 5669–5674 (2019).

    Article  CAS  Google Scholar 

  18. Chen, M. & Dong, G. Copper-catalyzed desaturation of lactones, lactams, and ketones under pH-neutral conditions. J. Am. Chem. Soc. 141, 14889–14897 (2019).

    Article  CAS  Google Scholar 

  19. Chen, M. & Dong, G. Direct catalytic desaturation of lactams enabled by soft enolization. J. Am. Chem. Soc. 139, 7757–7760 (2017).

    Article  CAS  Google Scholar 

  20. Chen, M., Rago, A. J. & Dong, G. Platinum‐catalyzed desaturation of lactams, ketones, and lactones. Angew. Chem. Int. Ed. 130, 16437–16441 (2018).

    Article  Google Scholar 

  21. Shono, T., Matsumura, Y. & Nakagawa, Y. Electroorganic chemistry. XII. Anodic oxidation of enol esters. J. Am. Chem. Soc. 96, 3532–3536 (1974).

    Article  CAS  Google Scholar 

  22. Shono, T., Okawa, M. & Nishiguchi, I. Electroorganic chemistry. XXI. Selective formation of α-acetoxy ketones and general synthesis of 2,3-disubstituted 2-cyclopentenones through the anodic oxidation of enol acetates. J. Am. Chem. Soc. 97, 6144–6147 (1975).

    Article  CAS  Google Scholar 

  23. Reddy, S. H. K., Chiba, K., Sun, Y. & Moeller, K. D. Anodic oxidations of electron-rich olefins: radical cation based approaches to the synthesis of bridged bicyclic ring skeletons. Tetrahedron 57, 5183–5197 (2001).

    Article  CAS  Google Scholar 

  24. Perkins, R. J., Feng, R., Lu, Q. & Moeller, K. D. Anodic cyclizations, seven‐membered rings, and the choice of radical cation vs. radical pathways. Chin. J. Chem. 37, 672–678 (2019).

    Article  CAS  Google Scholar 

  25. Sperry, J. B., Whitehead, C. R., Ghiviriga, I., Walczak, R. M. & Wright, D. L. Electrooxidative coupling of furans and silyl enol ethers: application to the synthesis of annulated furans. J. Org. Chem. 69, 3726–3734 (2004).

    Article  CAS  Google Scholar 

  26. Kingston, C. et al. A survival guide for the ‘Electro-curious’. Acc. Chem. Res. 53, 72–83 (2020).

    Article  CAS  Google Scholar 

  27. Xiang, J. et al. Hindered dialkyl ether synthesis via electrogenerated carbocations. Nature 573, 398–401 (2019).

    Article  CAS  Google Scholar 

  28. Takahira, Y. et al. Electrochemical C(sp3)-H fluorination. Synlett 30, 1178–1182 (2019).

    Article  CAS  Google Scholar 

  29. Kawamata, Y. et al. Electrochemically driven, Ni-catalyzed aryl amination: scope, mechanism, and applications. J. Am. Chem. Soc. 141, 6392–6402 (2019).

    Article  CAS  Google Scholar 

  30. Peters, B. K. et al. Scalable and safe synthetic organic electroreduction inspired by Li-ion battery chemistry. Science 363, 838–845 (2019).

    Article  CAS  Google Scholar 

  31. Yan, M., Kawamata, Y. & Baran, P. S. Synthetic organic electrochemical methods since 2000: on the verge of a renaissance. Chem. Rev. 117, 13230–13319 (2017).

    Article  CAS  Google Scholar 

  32. Li, C. et al. Electrochemically enabled, nickel-catalyzed amination. Angew. Chem. Int. Ed. 56, 13088–13093 (2017).

    Article  CAS  Google Scholar 

  33. Kawamata, Y. et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

    Article  CAS  Google Scholar 

  34. Rosen, J. D., Nelson, T. D., Huffman, M. A. & McNamara, J. M. A convenient synthesis of 3-aryl-δ-lactones. Tetrahedron Lett. 44, 365–368 (2003).

    Article  CAS  Google Scholar 

  35. Cai, X. C. & Snider, B. B. Synthesis of the spiroiminal moiety and approaches to the synthesis of marineosins A and B. J. Org. Chem. 78, 12161–12175 (2013).

    Article  CAS  Google Scholar 

  36. Tanaka, K., Ushio, H., Kawabata, Y. & Suzuki, H. Asymmetric synthesis of (R)-(–)- and (S)-(+)-muscone by enantioselective conjugate addition of chiral dimethylcuprate to (E)-cyclopentadec-2-en-1-one. J. Chem. Soc. Perkin Trans. 1 1991, 1445–1452 (1991).

    Article  Google Scholar 

  37. Feng, R., Smith, J. A. & Moeller, K. D. Anodic cyclization reactions and the mechanistic strategies that enable optimization. Acc. Chem. Res. 50, 2346–2352 (2017).

    Article  CAS  Google Scholar 

  38. Murphy, J. A., Khan, T. A., Zhou, S., Thomson, D. W. & Mahesh, M. Highly efficient reduction of unactivated aryl and alkyl iodides by a ground-state neutral organic electron donor. Angew. Chem. Int. Ed. 44, 1356–1360 (2005).

    Article  CAS  Google Scholar 

  39. Tang, F. & Moeller, K. D. Anodic oxidations and polarity: exploring the chemistry of olefinic radical cations. Tetrahedron 65, 10863–10875 (2009).

    Article  CAS  Google Scholar 

  40. Wiitala, K. W., Hoye, T. R. & Cramer, C. J. Hybrid density functional methods empirically optimized for the computation of 13C and 1H chemical shifts in chloroform solution. J. Chem. Theory Comput. 2, 1085–1092 (2006).

    Article  CAS  Google Scholar 

  41. Jain, R., Bally, T. & Rablen, P. R. Calculating accurate proton chemical shifts of organic molecules with density functional methods and modest basis sets. J. Org. Chem. 74, 4017–4023 (2009).

    Article  CAS  Google Scholar 

  42. Handy, S. T. & Zhang, Y. A simple guide for predicting regioselectivity in the coupling of polyhaloheteroaromatics. Chem. Commun. 2006, 299–301 (2006).

    Article  Google Scholar 

Download references


Financial support for this work was provided by the NIH (Grant GM-118176), the NSF (no. 1740656) and AGC Inc. (to Y.T.). S.G. thanks the Council for Higher Education, Fulbright Israel and Yad Hanadiv for the generous fellowships. Authors are grateful to D.-H. Huang and L. Pasternack (Scripps Research) for assistance with the NMR spectroscopy, to J. Chen, B. Sanchez and E. Sturgell (Scripps Automated Synthesis Facility) for assistance with HPLC, high-resolution mass spectroscopy and LCMS.

Author information

Authors and Affiliations



S.G., Y.T. and H.R.W. performed and analysed the experiments. P.S.B., S.G. Y.T. and J.C.V. designed the experiments. S.G. and H.R.W. performed the computational analysis. Z.Y. and J.L. designed the flow apparatus and ran the reaction on a 100 g scale in flow. P.-G.E. and D.D. aided in the substrate preparation, control studies and mechanistic analysis. P.S.B., J.C.V. and S.G. prepared the manuscript.

Corresponding author

Correspondence to Phil S. Baran.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–4 and Figs. 1–13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gnaim, S., Takahira, Y., Wilke, H.R. et al. Electrochemically driven desaturation of carbonyl compounds. Nat. Chem. 13, 367–372 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing