Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Metathesis of Ge=Ge double bonds

Abstract

The metathesis of carbon–carbon double bonds—the ‘reshuffling’ of their constituting carbene fragments—is a tremendously important preparative tool in industry and academia. Metathesis of heavier alkene homologues is restricted to occasional unproductive examples in phosphorus chemistry and cross-metathesis to mixed heavier alkynes. We now report the thermally induced, transition-metal-free metathesis of purpose-built unsymmetrically substituted digermenes. The A2Ge=GeAB starting materials are thus converted to symmetrically substituted derivatives of the A2Ge=GeA2 and ABGe=GeAB types. The use of tethered auxiliary donors (dimethylaniline groups) in substituents B ensures intramolecular donor–acceptor stabilization of the transient germylene fragments, the intermediacy of which is proven by trapping experiments. Density functional theory calculations shed light on the thermodynamic driving force of the metathesis and validate the crucial role of the tethered donor. With an analogously equipped bridged tetragermadiene precursor (A2Ge=GeB-X-BGe=GeA2), heavier acyclic diene metathesis polymerization occurs, in analogy to the widespread acyclic diene metathesis (ADMET) polymerization in the carbon case, yielding a polydigermene.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metathesis of digermenes.
Fig. 2: Molecular structures of E-5a, E-5b and Z-5b in the solid state.
Fig. 3: Trapping of germylenes 6a,b and equilibrium between digermenes E-5b and Z-5b in solution.
Fig. 4: Molecular structure of 11 in the solid state.

Similar content being viewed by others

Data availability

Crystallographic data for the structures in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition nos. CCDC 1948744 (3b), 1948745 (E-5a), 1948746 (E-5b),1948747 (Z-5b), 1995973 (10) and 1995974 (11). Copies of data can be obtained free of charge from www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are available within the Article and its Supplementary Information.

References

  1. Truett, W. L., Johnson, D. R., Robinson, I. M. & Montague, B. A. Polynorbornene by coordination polymerization. J. Am. Chem. Soc. 82, 2337–2340 (1960).

    Article  CAS  Google Scholar 

  2. Grubbs, R. H. & Chang, S. Recent advances in olefin metathesis and its application in organic synthesis. Tetrahedron 54, 4413–4450 (1998).

    Article  CAS  Google Scholar 

  3. Grubbs, R. H. Olefin metathesis. Tetrahedron 60, 7117–7140 (2004).

    Article  CAS  Google Scholar 

  4. Mol, J. C. Industrial applications of olefin metathesis. J. Mol. Catal. A Chem. 213, 39–45 (2004).

    Article  CAS  Google Scholar 

  5. Banks, R. L. & Bailey, G. C. Olefin disproportionation. Ind. Eng. Chem. Prod. Res. Dev. 3, 170–173 (1964).

    CAS  Google Scholar 

  6. Schrock, R. R. An ‘alkylcarbene’ complex of tantalum by intramolecular α-hydrogen abstraction. J. Am. Chem. Soc. 96, 6796–6797 (1974).

    Article  CAS  Google Scholar 

  7. Schwab, P., France, M. B., Ziller, J. W. & Grubbs, R. H. A series of well-defined metathesis catalysts—synthesis of [RuCl2(=CHR′)(PR3)2] and its reactions. Angew. Chem. Int. Ed. 34, 2039–2041 (1995).

    Article  CAS  Google Scholar 

  8. Wagener, K. B., Boncella, J. M. & Nel, J. G. Acyclic diene metathesis (ADMET) polymerization. Macromolecules 24, 2649–2657 (1991).

    Article  CAS  Google Scholar 

  9. Fischer, R. C. & Power, P. P. π-Bonding and the lone pair effect in multiple bonds involving heavier main group elements: developments in the new millennium. Chem. Rev. 110, 3877–3923 (2010).

    Article  CAS  Google Scholar 

  10. Dillon, K. B., Gibson, V. C. & Sequeira, L. J. Transition-metal catalyzed metathesis of phosphorus–phosphorus double bonds. J. Chem. Soc. Chem. Commun. 23, 2429–2430 (1995).

    Article  Google Scholar 

  11. Yoshifuji, M., Sato, T. & Inamoto, N. Photoreaction of (E)-1-mesityl-2-(2,4,6-tri-t-butylphenyl)diphosphene. Bull. Chem. Soc. Jpn 62, 2394–2395 (1989).

    Article  CAS  Google Scholar 

  12. Queen, J. D., Phung, A. C., Fettinger, J. C. & Power, P. P. Metathetical exchange between metal–metal triple bonds. J. Am. Chem. Soc. 142, 2233–2237 (2020).

    Article  CAS  Google Scholar 

  13. Davidson, P. J., Harris, D. H. & Lappert, M. F. Subvalent group 4B metal alkyls and amides. Part I. The synthesis and physical properties of kinetically stable bis[bis(trimethysilyl)methyl]-germanium(ii), -tin(ii) and -lead(ii). J. Chem. Soc. Dalton Trans. 21, 2268–2274 (1976).

    Article  Google Scholar 

  14. Kishikawa, K., Tokitoh, N. & Okazaki, R. The first spectroscopic observation of an equilibrium between a digermene and germylenes and experimental determination of a bond dissociation energy of a Ge–Ge double bond. Chem. Lett. 27, 239–240 (1998).

    Article  Google Scholar 

  15. Rupar, P. A., Jennings, M. C., Ragogna, P. J. & Baines, K. M. Stabilization of a transient diorganogermylene by an N-heterocyclic carbene. Organometallics 26, 4109–4111 (2007).

    Article  CAS  Google Scholar 

  16. Jana, A., Huch, V., Rzepa, H. S. & Scheschkewitz, D. A multiply functionalized base-coordinated GeII compound and its reversible dimerization to the digermene. Angew. Chem. Int. Ed. 54, 289–292 (2015).

    Article  CAS  Google Scholar 

  17. Nieder, D., Klemmer, L., Kaiser, Y., Huch, V. & Scheschkewitz, D. Isolation and reactivity of a digerma analogue of vinyllithiums: a lithium digermenide. Organometallics 37, 632–635 (2018).

    Article  CAS  Google Scholar 

  18. Klemmer, L., Kaiser, Y., Huch, V., Zimmer, M. & Scheschkewitz, D. Persistent digermenes with acyl and α-chlorosilyl functionalities. Chem. Eur. J. 25, 12187–12195 (2019).

    Article  CAS  Google Scholar 

  19. Schäfer, H., Saak, W. & Weidenbruch, M. Azadigermiridines by addition of diazomethane or trimethylsilyldiazomethane to a digermene. Organometallics 18, 3159–3163 (1999).

    Article  Google Scholar 

  20. Wetzel, T. G. & Roesky, P. W. A functionalized cyclooctatetraene as ligand in organolanthanide chemistry. Organometallics 17, 4009–4013 (1998).

    Article  CAS  Google Scholar 

  21. Kira, M., Iwamoto, T., Maruyama, T., Kabuto, C. & Sakurai, H. Tetrakis(trialkylsilyl)-digermenes. Salient effects of trialkylsilyl substituents on planarity around the Ge=Ge bond and remarkable thermochromism. Organometallics 15, 3767–3769 (1996).

    Article  CAS  Google Scholar 

  22. Iwamoto, T., Okita, J., Yoshida, N. & Kira, M. Structure and reactions of an isolable Ge=Si doubly bonded compound, tetra(t-butyldimethylsilyl)germasilene. Silicon 2, 209–216 (2010).

    Article  CAS  Google Scholar 

  23. Scheschkewitz, D. A silicon analogue of vinyllithium: structural characterization of a disilenide. Angew. Chem. Int. Ed. 43, 2965–2967 (2004).

    Article  CAS  Google Scholar 

  24. Ando, W., Itoh, H., Tsumuraya, T. & Yoshida, H. Spectroscopic characterization of diarylgermylene complexes with heteroatom-containing substrates. Organometallics 7, 1880–1882 (1988).

    Article  CAS  Google Scholar 

  25. Kobayashi, M. et al. (Z)-1,2-di(1-pyrenyl)disilene: synthesis, structure, and intramolecular charge-transfer emission. J. Am. Chem. Soc. 138, 758–761 (2016).

    Article  CAS  Google Scholar 

  26. Moritz, H. U. Increase in viscosity and its influence on polymerization processes. Chem. Eng. Technol. 12, 71–87 (1989).

    Article  CAS  Google Scholar 

  27. Carothers, W. H. Polymers and polyfunctionality. Trans. Faraday Soc. 32, 39–49 (1936).

    Article  CAS  Google Scholar 

  28. Li, L. et al. Coplanar oligo(p-phenylenedisilenylene)s as Si=Si analogues of oligo(p-phenylenevinylene)s: evidence for extended π-conjugation through the carbon and silicon π-frameworks. J. Am. Chem. Soc. 137, 15026–15035 (2015).

    Article  CAS  Google Scholar 

  29. Smith, R. C. & Protasiewicz, J. D. Conjugated polymers featuring heavier main group element multiple bonds: a diphosphene-PPV. J. Am. Chem. Soc. 126, 2268–2269 (2004).

    Article  CAS  Google Scholar 

  30. Wright, V. A. & Gates, D. P. Poly(p-phenylenephospaalkene): a π-conjugated macromolecule containing P=C bonds in the main chain. Angew. Chem. Int. Ed. 41, 2389–2392 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge Deutsche Forschungsgemeinschschaft (SCHE906/5-1) for funding. We thank B. Oberhausen, T. Klein and G. Kickelbick for assistance with DSC, thermogravimetric analysis and DLS measurements.

Author information

Authors and Affiliations

Authors

Contributions

L.K. and D.S. conceived and designed the experiments. L.K. and A.-L.T. synthesized and characterized all compounds. M.Z. performed solid-state NMR experiments. V.H. and B.M. carried out single-crystal X-ray structure determinations. L.K. analysed the data. L.K. performed and analysed the DFT calculations. L.K. and D.S. co-wrote the manuscript. D.S. acquired funding.

Corresponding author

Correspondence to David Scheschkewitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–78, Tables 1–11, Methods and Discussion.

Supplementary Data 1

Crystallographic data of compound 3b

Supplementary Data 2

Crystallographic data of compound E-5a

Supplementary Data 3

Crystallographic data of compound E-5b

Supplementary Data 4

Crystallographic data of compound Z-5b

Supplementary Data 5

Crystallographic data of compound 10

Supplementary Data 6

Crystallographic data of compound 11

Supplementary Data 1

XYZ-files of all DFT-optimized structures

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klemmer, L., Thömmes, AL., Zimmer, M. et al. Metathesis of Ge=Ge double bonds. Nat. Chem. 13, 373–377 (2021). https://doi.org/10.1038/s41557-021-00639-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-021-00639-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing