Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The catalytic dwell in ATPases is not crucial for movement against applied torque

Abstract

The ATPase-catalysed conversion of ATP to ADP is a fundamental process in biology. During the hydrolysis of ATP, the α3β3 domain undergoes conformational changes while the central stalk (γ/D) rotates unidirectionally. Experimental studies have suggested that different catalytic mechanisms operate depending on the type of ATPase, but the structural and energetic basis of these mechanisms remains unclear. In particular, it is not clear how the positions of the catalytic dwells influence the energy transduction. Here we show that the observed dwell positions, unidirectional rotation and movement against the applied torque are reflections of the free-energy surface of the systems. Instructively, we determine that the dwell positions do not substantially affect the stopping torque. Our results suggest that the three resting states and the pathways that connect them should not be treated equally. The current work demonstrates how the free-energy landscape determines the behaviour of different types of ATPases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Coupled free-energy maps of the α3β3 subunit conformational change and the γ/D stalk rotation.
Fig. 2: Conformational/catalytic free-energy surfaces.
Fig. 3: The PMF calculated from the conformational/catalytic surface.

Similar content being viewed by others

Data availability

The cryo-EM structures used in this work are available from the Protein Data Bank under PDB IDs 6RD9, 6RDC and 6REP for mF1; 6FKF, 6FKI and 6FKH for cF1; and 6QUM, 6R0W and 6R0Y for V1. The CG structure and input codes for CG relaxation and MCPT calculation are available freely online: https://doi.org/10.6084/m9.figshare.12768413.v2

Code availability

The MOLARIS-XG package is available upon request from the University of Southern California.

References

  1. Boyer, P. D. The ATP synthase—a splendid molecular machine. Annu. Rev. Biochem. 66, 717–749 (1997).

    CAS  PubMed  Google Scholar 

  2. Kühlbrandt, W. Structure and mechanisms of F-type ATP synthases. Annu. Rev. Biochem. 88, 515–549 (2019).

    PubMed  Google Scholar 

  3. Walker, J. E. The ATP synthase: the understood, the uncertain and the unknown. Biochem. Soc. Trans. 41, 1–16 (2013).

    CAS  PubMed  Google Scholar 

  4. Walker, J. E. ATP synthesis by rotary catalysis (Nobel lecture). Angew. Chem. Int. Ed. 37, 2308–2319 (1998).

    CAS  Google Scholar 

  5. Junge, W. & Nelson, N. ATP synthase. Annu. Rev. Biochem. 84, 631–657 (2015).

    CAS  PubMed  Google Scholar 

  6. Mukherjee, S. & Warshel, A. The FOF1 ATP synthase: from atomistic three-dimensional structure to the rotary-chemical function. Photosynth. Res. 134, 1–15 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Watanabe, R. et al. Mechanical modulation of catalytic power on F1-ATPase. Nat. Chem. Biol. 8, 86–92 (2012).

    CAS  Google Scholar 

  8. Adachi, K. et al. Coupling of rotation and catalysis in F1-ATPase revealed by single-molecule imaging and manipulation. Cell 130, 309–321 (2007).

    CAS  PubMed  Google Scholar 

  9. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    CAS  PubMed  Google Scholar 

  10. Masaike, T., Koyama-Horibe, F., Oiwa, K., Yoshida, M. & Nishizaka, T. Cooperative three-step motions in catalytic subunits of F1-ATPase correlate with 80° and 40° substep rotations. Nat. Struct. Mol. Biol. 15, 1326–1333 (2008).

    CAS  PubMed  Google Scholar 

  11. Suzuki, T., Tanaka, K., Wakabayashi, C., Saita, E. & Yoshida, M. Chemomechanical coupling of human mitochondrial F1-ATPase motor. Nat. Chem. Biol. 10, 930–936 (2014).

    CAS  PubMed  Google Scholar 

  12. Bason, J. V., Montgomery, M. G., Leslie, A. G. W. & Walker, J. E. How release of phosphate from mammalian F1-ATPase generates a rotary substep. Proc. Natl Acad. Sci. USA 112, 6009–6014 (2015).

    CAS  PubMed  Google Scholar 

  13. Kobayashi, R., Ueno, H., Li, C.-B. & Noji, H. Rotary catalysis of bovine mitochondrial F1-ATPase studied by single-molecule experiments. Proc. Natl Acad. Sci. USA 117, 1447–1456 (2020).

    CAS  PubMed  Google Scholar 

  14. Suzuki, K. et al. Crystal structures of the ATP-binding and ADP-release dwells of the V1 rotary motor. Nat. Commun. 7, 13235 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Minagawa, Y. et al. Basic properties of rotary dynamics of the molecular motor Enterococcus hirae V1-ATPase. J. Biol. Chem. 288, 32700–32707 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Murphy, B. J. et al. Rotary substates of mitochondrial ATP synthase reveal the basis of flexible F1–Fo coupling. Science 364, eaaw9128 (2019).

    CAS  PubMed  Google Scholar 

  17. Hahn, A., Vonck, J., Mills, D. J., Meier, T. & Kühlbrandt, W. Structure, mechanism, and regulation of the chloroplast ATP synthase. Science 360, 4318 (2018).

    Google Scholar 

  18. Zhou, L. & Sazanov, L. A. Structure and conformational plasticity of the intact Thermus thermophilus V/A-type ATPase. Science 365, eaaw9144 (2019).

    CAS  PubMed  Google Scholar 

  19. Majewski, D. D. et al. Cryo-EM structure of the homohexameric T3SS ATPase-central stalk complex reveals rotary ATPase-like asymmetry. Nat. Commun. 10, 626 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Srivastava, A. P. et al. High-resolution cryo-EM analysis of the yeast ATP synthase in a lipid membrane. Science 360, eaas9699 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Sielaff, H., Yanagisawa, S., Frasch, W. D., Junge, W. & Börsch, M. Structural asymmetry and kinetic limping of single rotary F-ATP synthases. Molecules 24, 504 (2019).

    PubMed Central  Google Scholar 

  22. Mukherjee, S. & Warshel, A. Electrostatic origin of the mechanochemical rotary mechanism and the catalytic dwell of F1-ATPase. Proc. Natl Acad. Sci. USA 108, 20550–20555 (2011).

    CAS  PubMed  Google Scholar 

  23. Dittrich, M., Hayashi, S. & Schulten, K. On the mechanism of ATP hydrolysis in F1-ATPase. Biophys. J. 85, 2253–2266 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. S̆trajbl, M., Shurki, A. & Warshel, A. Converting conformational changes to electrostatic energy in molecular motors: the energetics of ATP synthase. Proc. Natl Acad. Sci. USA 100, 14834–14839 (2003).

    PubMed  Google Scholar 

  25. Mukherjee, S. & Warshel, A. Realistic simulations of the coupling between the protomotive force and the mechanical rotation of the F0-ATPase. Proc. Natl Acad. Sci. USA 109, 14876–14881 (2012).

    CAS  PubMed  Google Scholar 

  26. Lee, M., Kolev, V. & Warshel, A. Validating a coarse-grained voltage activation model by comparing its performance to the results of monte carlo simulations. J. Phys. Chem. B 121, 11284–11291 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Vorobyov, I., Kim, I., Chu, Z. T. & Warshel, A. Refining the treatment of membrane proteins by coarse-grained models. Proteins Struct. Funct. Bioinformatics 84, 92–117 (2016).

    CAS  Google Scholar 

  28. Vicatos, S., Rychkova, A., Mukherjee, S. & Warshel, A. An effective coarse-grained model for biological simulations: recent refinements and validations. Proteins 82, 1168–1185 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Z. & Thirumalai, D. Dissecting the kinematics of the kinesin step. Structure 20, 628–640 (2012).

    CAS  PubMed  Google Scholar 

  30. Alhadeff, R. & Warshel, A. Reexamining the origin of the directionality of myosin V. Proc. Natl Acad. Sci. USA 114, 10426–10431 (2017).

    CAS  PubMed  Google Scholar 

  31. Warshel, A., Sharma, P. K., Kato, M. & Parson, W. W. Modeling electrostatic effects in proteins. Biochim. Biophys. Acta Proteins Proteom. 1764, 1647–1676 (2006).

    CAS  Google Scholar 

  32. Bai, C. & Warshel, A. Revisiting the protomotive vectorial motion of F0-ATPase. Proc. Natl Acad. Sci. USA, 116, 19484–19489 (2019).

  33. Alhadeff, R. & Warshel, A. A free-energy landscape for the glucagon-like peptide 1 receptor GLP1R. Proteins Struct. Funct. Bioinformatics 88, 127–134 (2020).

    CAS  Google Scholar 

  34. Kim, I. & Warshel, A. Analyzing the electrogenicity of cytochrome c oxidase. Proc. Natl Acad. Sci. USA 113, 7810–7815 (2016).

    CAS  PubMed  Google Scholar 

  35. Mukherjee, S. & Warshel, A. Dissecting the role of the γ-subunit in the rotary–chemical coupling and torque generation of F1-ATPase. Proc. Natl Acad. Sci. USA 112, 2746–2751 (2015).

    CAS  PubMed  Google Scholar 

  36. Mukherjee, S., Bora, R. P. & Warshel, A. Torque, chemistry and efficiency in molecular motors: a study of the rotary–chemical coupling in F1-ATPase. Q. Rev. Biophys. 48, 395–403 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Astumian, R. D., Mukherjee, S. & Warshel, A. The physics and physical chemistry of molecular machines. ChemPhysChem 17, 1719–1741 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ueno, H. et al. Torque generation of Enterococcus hirae V-ATPase. J. Biol. Chem. 289, 31212–31223 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pänke, O., Cherepanov, D. A., Gumbiowski, K., Engelbrecht, S. & Junge, W. Viscoelastic dynamics of actin filaments coupled to rotary F-ATPase: angular torque profile of the enzyme. Biophys. J. 81, 1220–1233 (2001).

    PubMed  PubMed Central  Google Scholar 

  40. Arai, HidenobuC. et al. Torque generation mechanism of F1-ATPase upon NTP binding. Biophys. J. 107, 156–164 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Sakaki, N. et al. One rotary mechanism for F1-ATPase over ATP concentrations from millimolar down to nanomolar. Biophys. J. 88, 2047–2056 (2005).

    CAS  PubMed  Google Scholar 

  42. McMillan, D. G. G., Watanabe, R., Ueno, H., Cook, G. M. & Noji, H. Biophysical characterization of a thermoalkaliphilic molecular motor with a high stepping torque gives insight into evolutionary ATP synthase adaptation. J. Biol. Chem. 291, 23965–23977 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Hisabori, T., Kondoh, A. & Yoshida, M. The γ subunit in chloroplast F1-ATPase can rotate in a unidirectional and counter-clockwise manner. FEBS Lett. 463, 35–38 (1999).

    CAS  PubMed  Google Scholar 

  44. Yasuda, R., Noji, H., Kinosita, K. & Yoshida, M. F1-ATPase is a highly efficient molecular motor that rotates with discrete 120° steps. Cell 93, 1117–1124 (1998).

    CAS  PubMed  Google Scholar 

  45. Noji, H., Ueno, H. & McMillan, D. G. G. Catalytic robustness and torque generation of the F1-ATPase. Biophys. Rev. 9, 103–118 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Imamura, H. et al. Rotation scheme of V1-motor is different from that of F1-motor. Proc. Natl Acad. Sci. USA 102, 17929–17933 (2005).

    CAS  PubMed  Google Scholar 

  47. Astumian, R. D. Kinetic asymmetry allows macromolecular catalysts to drive an information ratchet. Nat. Commun. 10, 3837 (2019).

    PubMed  PubMed Central  Google Scholar 

  48. Astumian, R. D. Thermodynamics and kinetics of molecular motors. Biophys. J. 98, 2401–2409 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Gao, Y. Q., Yang, W. & Karplus, M. A structure-based model for the synthesis and hydrolysis of ATP by F1-ATPase. Cell 123, 195–205 (2005).

    CAS  PubMed  Google Scholar 

  50. Kamerlin, S. C. L., Vicatos, S., Dryga, A. & Warshel, A. Coarse-grained (multiscale) simulations in studies of biophysical and chemical systems. Annu. Rev. Phys. Chem. 62, 41–64 (2011).

    CAS  PubMed  Google Scholar 

  51. Lee, F. S., Chu, Z. T. & Warshel, A. Microscopic and semimicroscopic calculations of electrostatic energies in proteins by the POLARIS and ENZYMIX programs. J. Comput. Chem. 14, 161–185 (1993).

    CAS  Google Scholar 

  52. Robert, C. P. & Casella, G. Monte Carlo Statistical Methods (Springer, 2005).

  53. Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation grant MCB 1707167 and the National Institute of Health grant R01-AI055926. We thank the University of Southern California High Performance Computing and Communication Center (HPCC), as well as the Extreme Science and Engineering Discovery Environment’s (XSEDE) Comet facility at the San Diego Supercomputing Center, for computational resources.

Author information

Authors and Affiliations

Authors

Contributions

C.B. and A.W. conceived and designed the project. C.B. designed, executed and analysed all experiments with guidance from A.W. M.A. executed and analysed part of the experiments with assistance and guidance from C.B. and A.W. C.B. wrote the input and analysis codes for all experiments. C.B. and A.W. wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Arieh Warshel.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1 and 2 and discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, C., Asadi, M. & Warshel, A. The catalytic dwell in ATPases is not crucial for movement against applied torque. Nat. Chem. 12, 1187–1192 (2020). https://doi.org/10.1038/s41557-020-0549-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0549-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing