Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes

Abstract

Photoelectrochemical cells that utilize water as a source of electrons are one of the most attractive solutions for the replacement of fossil fuels by clean and sustainable solar fuels. To achieve this, heterogeneous water oxidation catalysis needs to be mastered and properly understood. The search continues for a catalyst that is stable at the surface of electro(photo)anodes and can efficiently perform this reaction at the desired neutral pH. Here, we show how oligomeric Ru complexes can be anchored on the surfaces of graphitic materials through CH–π interactions between the auxiliary ligands bonded to Ru and the hexagonal rings of the graphitic surfaces, providing control of their molecular coverage. These hybrid molecular materials behave as molecular electroanodes that catalyse water oxidation to dioxygen at pH 7 with high current densities. This strategy for the anchoring of molecular catalysts on graphitic surfaces can potentially be extended to other transition metals and other catalytic reactions.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: NMR characterization of the coordination oligomers.
Fig. 2: STM of 15 on HOPG.
Fig. 3: Oligomer–surface interaction by 2D GIWAXS.
Fig. 4: Theoretical analysis based on DFT/MM.
Fig. 5: XAS at the surface of the electrodes.
Fig. 6: Water oxidation electrocatalytic performance of 15@CNT@GC.

Data availability

All data generated during this study, experimental details together with additional, analytic, spectroscopic, electrochemical, X-ray scattering, microscopy and DFT data are included in this article or in the Supplementary Information. Data for Figs. 16 are available as source data with this paper. Data for Supplementary Figs. are available from the corresponding author on reasonable request.

The crystal data parameters of 1 and 2 and all information related to the structures can be found in the deposited CIF/Checkcif-files. CCDC 1945004 (1) and 1945005 (2) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures.

A data set collection of computational results is available as source data with this paper and can be accessed at ioChem-BD repository via https://doi.org/10.19061/iochem-bd-1-180. Source data are provided with this paper.

References

  1. 1.

    Blakemore, J. D., Crabtree, R. H. & Brudvig, G. W. Molecular catalysts for water oxidation. Chem. Rev. 115, 12974–13005 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Berardi, S. et al. Molecular artificial photosynthesis. Chem. Soc. Rev. 43, 7501–7519 (2014).

    CAS  PubMed  Google Scholar 

  3. 3.

    Garrido-Barros, P., Gimbert-Suriñach, C., Matheu, R., Sala, X. & Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 46, 6088–6098 (2017).

    CAS  PubMed  Google Scholar 

  4. 4.

    Matheu, R. et al. The development of molecular water oxidation catalysts. Nat. Rev. Chem. 3, 331–341 (2019).

    CAS  Google Scholar 

  5. 5.

    Duan, L. et al. A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418–423 (2012).

    CAS  PubMed  Google Scholar 

  6. 6.

    Suga, M. et al. Native structure of photosystem II at 1.95 Å resolution viewed by femtosecond X-ray pulses. Nature 517, 99–103 (2015).

    CAS  PubMed  Google Scholar 

  7. 7.

    Matheu, R., Ertem, Z. M., Gimbert-Suriñach, C., Sala, X. & Llobet, A. Seven coordinated molecular ruthenium–water oxidation catalysts: A coordination chemistry journey. Chem. Rev. 119, 3453–3471 (2019).

    CAS  PubMed  Google Scholar 

  8. 8.

    Garrido-Barros, P. et al. Redox non-innocent ligand controls water oxidation overpotential in a new family of mononuclear Cu-based efficient catalysts. J. Am. Chem. Soc. 137, 6758–6761 (2015).

    CAS  PubMed  Google Scholar 

  9. 9.

    Grätzel, M. Artificial photosynthesis: water cleavage into hydrogen and oxygen by visible light. Acc. Chem. Res. 14, 376–384 (1981).

    Google Scholar 

  10. 10.

    Toshima, N. & Yonezawa, T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 22, 1179–1201 (1998).

    CAS  Google Scholar 

  11. 11.

    Cao, S., Tao, F., Tang, Y., Lia, Y. & Yu, J. Size- and shape-dependent catalytic performances of oxidation and reduction reactions on nanocatalysts. Chem. Soc. Rev. 45, 4747–4765 (2016).

    CAS  PubMed  Google Scholar 

  12. 12.

    Kotani, H., Hanazaki, R., Ohkubo, K., Yamada, Y. & Fukuzumi, S. Size- and shape-dependent activity of metal nanoparticles as hydrogen evolution catalysts: Mechanistic insights into photocatalytic hydrogen evolution. Chem. Eur. J. 17, 2777–2785 (2011).

    CAS  PubMed  Google Scholar 

  13. 13.

    Roy, C. et al. Impact of nanoparticle size and lattice oxygen on water oxidation on NiFeOxHy. Nat. Catal. 1, 820–829 (2018).

    CAS  Google Scholar 

  14. 14.

    Francàs, L. et al. Ru–bis(pyridine)pyrazolate (bpp)‐based water‐oxidation catalysts anchored on TiO2: The importance of the nature and position of the anchoring group. Chem. Eur. J. 22, 5261–5268 (2016).

    PubMed  Google Scholar 

  15. 15.

    Hyde, J. T. et al. Electrochemical instability of phosphonate-derivatized, ruthenium(iii) polypyridyl complexes on metal oxide surfaces. ACS Appl. Mater. Interfaces 7, 9554–9562 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Wadsworth, B. L., Beiler, A. M., Khusnutdinova, D., Jacob, S. I. & Moore, G. F. Electrocatalytic and optical properties of cobaloxime catalysts immobilized at a surface-grafted polymer interface. ACS Catal. 6, 8048–8057 (2016).

    CAS  Google Scholar 

  17. 17.

    Chen, Z., Concepcion, J. J., Jurss, J. W. & Meyer, T. J. Single-site, catalytic water oxidation on oxide surfaces. J. Am. Chem. Soc. 131, 15580–15581 (2009).

    CAS  PubMed  Google Scholar 

  18. 18.

    Ashford, D. L. et al. Molecular chromophore-catalyst assemblies for solar fuel applications. Chem. Rev. 115, 13006–13049 (2015).

    CAS  PubMed  Google Scholar 

  19. 19.

    Wu, L. et al. A molecular silane-derivatized Ru(ii) catalyst for photoelectrochemical water oxidation. J. Am. Chem. Soc. 140, 15062–15069 (2018).

    CAS  PubMed  Google Scholar 

  20. 20.

    Kaminsky, C. J., Wright, J. & Surendranath, Y. Graphite-conjugation enhances porphyrin electrocatalysis. ACS Catal. 9, 3667–3671 (2019).

    CAS  Google Scholar 

  21. 21.

    Jackson, M. N. et al. Strong electronic coupling of molecular sites to graphitic electrodes via pyrazine conjugation. J. Am. Chem. Soc. 140, 1004–1010 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Oh, S., Gallagher, J. R., Miller, J. T. & Surendranath, Y. Graphite-conjugated rhenium catalysts for carbon dioxide reduction. J. Am. Chem. Soc. 138, 1820–1823 (2016).

    CAS  PubMed  Google Scholar 

  23. 23.

    Blakemore, J. D., Gupta, A., Warren, J. J., Brunschwig, B. S. & Gray, H. B. Noncovalent immobilization of electrocatalysts on carbon electrodes for fuel production. J. Am. Chem. Soc. 135, 18288–18291 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Sheehan, S. W. et al. A molecular catalyst for water oxidation that binds to metal oxide surfaces. Nat. Commun. 6, 6469 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Mitchell, S., Thomas, J. M. & Pérez-Ramírez, J. Single atom catalysis. Catal. Sci. Technol. 7, 4248–4249 (2017).

    CAS  Google Scholar 

  26. 26.

    Sala, X. et al. Molecular water oxidation mechanisms followed by transition metals: State of the art. Acc. Chem. Res. 47, 504–516 (2014).

    CAS  PubMed  Google Scholar 

  27. 27.

    Garrido-Barros, P., Matheu, R., Gimbert-Suriñach, C. & Llobet, A. Electronic, mechanistic and structural factors that influence the performance of molecular water oxidation catalysts anchored on electrode surfaces. Curr. Opin. Electrochem. 15, 140–147 (2019).

    CAS  Google Scholar 

  28. 28.

    Creus, J. et al. A million turnover molecular anode for catalytic water oxidation. Angew. Chem. Int. Ed. 55, 15382–15386 (2016).

    CAS  Google Scholar 

  29. 29.

    McCrory, C. C. L., Jung, S., Peters, J. C. & Jaramillo, T. F. Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977–16987 (2013).

    CAS  PubMed  Google Scholar 

  30. 30.

    McCrory, C. C. L. et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J. Am. Chem. Soc. 137, 4347–4357 (2015).

    CAS  Google Scholar 

  31. 31.

    Smith, D. L. et al. Photochemical route for accessing amorphous metal oxide materials for water oxidation catalysis. Science 340, 60–63 (2013).

    CAS  PubMed  Google Scholar 

  32. 32.

    Merrill, M. D. & Dougherty, R. C. Metal oxide catalysts for the evolution of O2 from H2O. J. Phys. Chem. C 112, 3655–3666 (2008).

    CAS  Google Scholar 

  33. 33.

    Smith, R. D. L., Prevot, M. S., Fagan, R. D., Trudel, S. & Berlinguette, C. P. Water oxidation catalysis: electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580–11586 (2013).

    CAS  PubMed  Google Scholar 

  34. 34.

    Salvatore, D. A., Pena, B., Dettelbach, K. E. & Berlinguette, C. P. Photodeposited ruthenium dioxide films for oxygen evolution reaction electrocatalysis. J. Mater. Chem. A 5, 1575–1580 (2017).

    CAS  Google Scholar 

  35. 35.

    Carmo, M., Fritz, D. L., Mergel, J. & Stolten, D. A comprehensive review on PEM water electrolysis. J. Hydrogen Energy 38, 4901–4934 (2013).

    CAS  Google Scholar 

  36. 36.

    Zeng, K. & Zhang, D. Recent progress in alkaline water electrolysis for hydrogen production and applications. Prog. Energy Combust. Sci. 36, 307–326 (2010).

    CAS  Google Scholar 

  37. 37.

    Xu, J. et al. Cluster beam deposition of ultrafine cobalt and ruthenium clusters for efficient and stable oxygen evolution reaction. ACS Appl. Energy Mater. 1, 3013–3018 (2018).

    CAS  Google Scholar 

  38. 38.

    Li, W. et al. From water reduction to oxidation: Janus Co–Ni–P nanowires as high-efficiency and ultrastable electrocatalysts for over 3000 h water splitting. J. Power Sources 330, 156–166 (2016).

    CAS  Google Scholar 

  39. 39.

    Kanan, M. W. & Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    CAS  PubMed  Google Scholar 

  40. 40.

    Surendranath, Y., Kanan, M. W. & Nocera, D. G. Mechanistic studies of the oxygen evolution reaction by a cobalt-phosphate catalyst at neutral pH. J. Am. Chem. Soc. 132, 16501–16509 (2010).

    CAS  PubMed  Google Scholar 

  41. 41.

    Hoffman, R. E. et al. Self-diffusion measurements of polycyclic aromatic hydrocarbon alkali metal salts. J. Chem. Soc. Perkin Trans. 2, 1659–1664 (1998).

    Google Scholar 

  42. 42.

    Liu, T. & Xiao, Z. Dynamic light scattering of rigid rods — A universal relationship on the apparent diffusion coefficient as revealed by numerical studies and its use for rod length determination. Macromol. Chem. Phys. 213, 1697–1705 (2012).

    CAS  Google Scholar 

  43. 43.

    Ma, J. et al. Amorphous FeNi-bimetallic infinite coordination polymers as advanced electrocatalysts for the oxygen evolution reaction. Chem. Commun. 55, 12567–12570 (2019).

    CAS  Google Scholar 

  44. 44.

    Bhunia, S. et al. Efficacious electrochemical oxygen evolution from a novel Co(II) porphyrin/pyrene-based conjugated microporous polymer. ACS Appl. Mater. Interfaces 11, 1520–1528 (2019).

    CAS  PubMed  Google Scholar 

  45. 45.

    Matheu, R. et al. Intramolecular proton transfer boosts water oxidation catalyzed by a Ru complex. J. Am. Chem. Soc. 137, 10786–10795 (2015).

    CAS  PubMed  Google Scholar 

  46. 46.

    Neel, A. J., Hilton, M. J., Sigman, M. S. & Toste, F. D. Exploiting non-covalent π interactions for catalyst design. Nature 543, 637–646 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Nishio, M. The CH/– hydrogen bond in chemistry. Conformation, supramolecules, optical resolution and interactions involving carbohydrates. Phys. Chem. Chem. Phys. 13, 13873–13900 (2011).

    CAS  PubMed  Google Scholar 

  48. 48.

    Xiao, Y. & Lu, X. Morphology of organic photovoltaic non-fullerene acceptors investigated by grazing incidence X-ray scattering techniques. Mater. Today Nano 5, 100030 (2019).

    Google Scholar 

  49. 49.

    Rodríguez-Guerra Pedregal, J. et al. GARLEEK: Adding an extra flavor to ONIOM. J. Comput. Chem. 40, 381–386 (2019).

    Google Scholar 

  50. 50.

    Álvarez-Moreno, M. et al. Managing the computational chemistry big data problem: the ioChem-BD platform. J. Chem. Inf. Model. 55, 95–103 (2015).

    PubMed  Google Scholar 

  51. 51.

    Waters, M. L. Aromatic interactions in model systems. Curr. Opin. Chem. Biol. 6, 736–741 (2002).

    CAS  PubMed  Google Scholar 

  52. 52.

    Concepcion, J. J., Jurss, J. W., Hoertz, P. G. & Meyer, T. J. Catalytic and surface-electrocatalytic water oxidation by redox mediator–catalyst assemblies. Angew. Chem. Int. Ed. 48, 9473–9476 (2009).

    CAS  Google Scholar 

  53. 53.

    Matheu, R., Benet-Buchholz, J., Sala, X. & Llobet, A. Synthesis, structure, and redox properties of a trans-diaqua Ru complex that reaches seven-coordination at high oxidation states. Inorg. Chem. 57, 1757–1765 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    Noviandri, I. et al. The decamethylferrocenium/decamethylferrocene redox couple: A superior redox standard to the ferrocenium/ferrocene redox couple for studying solvent effects on the thermodynamics of electron transfer. J. Phys. Chem. B 103, 6713–6722 (1999).

    CAS  Google Scholar 

  55. 55.

    Simonelli, L. et al. CLÆSS: The hard X-ray absorption beamline of the ALBA CELLS synchrotron. Cogent Phys. 3, 1231987 (2016).

    Google Scholar 

  56. 56.

    Kieffer, J. & Karkoulis, D. PyFAI, a versatile library for azimuthal regrouping. J. Phys. Conf. Ser. 425, 202012 (2013).

    Google Scholar 

  57. 57.

    Konarev, P. V., Volkov, V. V., Sokolova, A. V., Koch, M. H. J. & Svergun, D. I. PRIMUS: a Windows-PC based system for small-angle scattering data analysis. J. Appl. Cryst. 36, 1277–1282 (2003).

    CAS  Google Scholar 

  58. 58.

    Hulsken, B. et al. Real-time single-molecule imaging of oxidation catalysis at a liquid–solid interface. Nat. Nanotechnol. 2, 285–289 (2007).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Md.A.H. acknowledge funding from AGAUR with grant nos 2016FI_B 01011 and 2014 SGR-915. F.M. and A.d.A. acknowledge funding from MINECO (CTQ2017-87792-R). A.d.A. thanks MINECO for a FPI fellowship (BES-2015-073012). J.L. thanks the Alexander von Humboldt Foundation for financial support. D.M. acknowledges support by the Severo Ochoa Excellence programme (SEV-2016-0686) from the Instituto IMDEA Nanociencia, the Acciones de Dinamización “Europa Investigacion” grant (EIN2019-103399) and the Spanish Ministerio de Ciencia, Innovación y Universidades grant (PID2019-111086RA-I00). X.S. acknowledges funding from MINECO/FEDER (PID2019-104171RB-I00). A.L. acknowledges support from the Ministerio de Ciencia e Innovación, FEDER and AGAUR through grants: PID2019-111617RB-I00 and 2017-SGR-1631. XAS experiments were performed at the CLAESS beamline at the ALBA Synchrotron under proposal No. 2016091818 and 2017092493 with the collaboration of ALBA staff and additionally used resources of the sector 20 beamline at the APS at Argonne National Laboratory. Sector 20 beamline at APS is operated by the US DOE (Contract No. DE-AC02-06CH11357) and the Canadian Light Source. Synchrotron X-ray scattering experiments were performed at NCD-SWEET beamline at the ALBA synchrotron with the collaboration of ALBA staff (Proposal 2020014050).

Author information

Affiliations

Authors

Contributions

Md.A.H. and M.G.-S. performed the synthesis, characterization and electrochemical experiments and coordinated the tasks with all authors. These authors contributed equally to this work. J.A.A.W.E. performed the STM experiments. D.M. performed the XANES and EXAFS measurements and data analysis. Y.S. prepared the samples for XANES and EXAFS experiments. J.B.-B. performed the single crystal X-ray structure determinations. M.M. and E.S. performed and analysed the synchrotron scattering experiments. J.L., A.G.-M. and C.S. designed, carried out and analysed electron microscopy experiments. F.M. designed the computational part. A.d.A. performed the theoretical calculations. C.G.-S. supervised the project. A.L. conceived the idea of the project and wrote the paper with input from other authors. All authors contributed to the design of experiments, analysis of the results and preparation of the manuscript.

Corresponding authors

Correspondence to Mario Lanza or Feliu Maseras or Carolina Gimbert-Suriñach or Antoni Llobet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–48, computational methods.

Supplementary Data 1

Supplementary Data 1.

Supplementary Data 2

Supplementary Data 2.

Supplementary Data 3

Supplementary Data 3.

Source data

Source Data Fig. 1

This file contains raw NMR data for Fig. 1.

Source Data Fig. 3

Figure_3D.xlsx – Excel file with source data for Fig. 3d.

Source Data Fig. 4

Coordinates for this figure.

Source Data Fig. 5

Figure_5.xlsx – Excel file with source data for Fig. 5.

Source Data Fig. 6

Excel file with source data for Fig. 6.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hoque, M.A., Gil-Sepulcre, M., de Aguirre, A. et al. Water oxidation electrocatalysis using ruthenium coordination oligomers adsorbed on multiwalled carbon nanotubes. Nat. Chem. 12, 1060–1066 (2020). https://doi.org/10.1038/s41557-020-0548-7

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing