Abstract
The electronic Schrödinger equation can only be solved analytically for the hydrogen atom, and the numerically exact full configuration-interaction method is exponentially expensive in the number of electrons. Quantum Monte Carlo methods are a possible way out: they scale well for large molecules, they can be parallelized and their accuracy has, as yet, been only limited by the flexibility of the wavefunction ansatz used. Here we propose PauliNet, a deep-learning wavefunction ansatz that achieves nearly exact solutions of the electronic Schrödinger equation for molecules with up to 30 electrons. PauliNet has a multireference Hartree–Fock solution built in as a baseline, incorporates the physics of valid wavefunctions and is trained using variational quantum Monte Carlo. PauliNet outperforms previous state-of-the-art variational ansatzes for atoms, diatomic molecules and a strongly correlated linear H10, and matches the accuracy of highly specialized quantum chemistry methods on the transition-state energy of cyclobutadiene, while being computationally efficient.

This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Machine learning electronic structure methods based on the one-electron reduced density matrix
Nature Communications Open Access 07 October 2023
-
GS-DeepNet: mastering tokamak plasma equilibria with deep neural networks and the Grad–Shafranov equation
Scientific Reports Open Access 22 September 2023
-
Stochastic representation of many-body quantum states
Nature Communications Open Access 16 June 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout







Data availability
All raw data were generated with the accompanying code and are available in Figshare (https://doi.org/10.6084/m9.figshare.12720569.v2)51. Processed data used to generate figures are both included with the code and provided with this paper as source data.
Code availability
All computer code developed in this work is released either in the general DeepQMC package available on Zenodo (https://doi.org/10.5281/zenodo.3960827)52 and developed on Github (https://github.com/deepqmc/deepqmc), or in the project-specific repository (https://doi.org/10.6084/m9.figshare.12720833.v1)53, both under the MIT license.
References
Piela, L. Ideas of Quantum Chemistry 2nd edn (Elsevier, 2014).
Morales, M. A., McMinis, J., Clark, B. K., Kim, J. & Scuseria, G. E. Multideterminant wave functions in quantum Monte Carlo. J. Chem. Theory Comput. 8, 2181–2188 (2012).
Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).
Shavitt, I. & Bartlett, R. J. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge Univ. Press, 2009).
Booth, G. H., Thom, A. J. W. & Alavi, A. Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. J. Chem. Phys. 131, 054106 (2009).
Thom, A. J. W. Stochastic coupled cluster theory. Phys. Rev. Lett. 105, 263004 (2010).
Choo, K., Mezzacapo, A. & Carleo, G. Fermionic neural-network states for ab-initio electronic structure. Nat. Commun. 11, 2368 (2020).
Foulkes, W. M. C., Mitas, L., Needs, R. J. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001).
Needs, R. J., Towler, M. D., Drummond, N. D. & Ríos, P. L. Continuum variational and diffusion quantum Monte Carlo calculations. J. Phys. Condens. Matter 22, 023201 (2010).
Austin, B. M., Zubarev, D. Y. & Lester, W. A. Quantum Monte Carlo and related approaches. Chem. Rev. 112, 263–288 (2012).
Ambrosetti, A., Alfè, D., DiStasio, R. A. Jr & Tkatchenko, A. Hard numbers for large molecules: toward exact energetics for supramolecular systems. J. Phys. Chem. Lett. 5, 849–855 (2014).
Zen, A. et al. Fast and accurate quantum Monte Carlo for molecular crystals. Proc. Natl Acad. Sci. USA 115, 1724–1729 (2018).
López Ríos, P., Ma, A., Drummond, N. D., Towler, M. D. & Needs, R. J. Inhomogeneous backflow transformations in quantum Monte Carlo calculations. Phys. Rev. E 74, 066701 (2006).
Feynman, R. P. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956).
Schmidt, K. E. & Pandharipande, V. R. New variational wave function for liquid 3He. Phys. Rev. B 19, 2504–2519 (1979).
Luo, D. & Clark, B. K. Backflow transformations via neural networks for quantum many-body wave functions. Phys. Rev. Lett. 122, 226401 (2019).
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).
Bartók, A. P. et al. Machine learning unifies the modeling of materials and molecules. Sci. Adv. 3, e1701816 (2017).
Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).
Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. SchNet — a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).
Faber, F. A., Christensen, A. S., Huang, B. & von Lilienfeld, O. A. Alchemical and structural distribution based representation for universal quantum machine learning. J. Chem. Phys. 148, 241717 (2018).
Welborn, M., Cheng, L. & Miller, T. F. Transferability in machine learning for electronic structure via the molecular orbital basis. J. Chem. Theory Comput. 14, 4772–4779 (2018).
Grisafi, A. et al. Transferable machine-learning model of the electron density. ACS Cent. Sci. 5, 57–64 (2019).
Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R. & Maurer, R. J. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. Nat. Commun. 10, 5024 (2019).
Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).
Saito, H. Method to solve quantum few-body problems with artificial neural networks. J. Phys. Soc. Jpn 87, 074002 (2018).
Ruggeri, M., Moroni, S. & Holzmann, M. Nonlinear network description for many-body quantum systems in continuous space. Phys. Rev. Lett. 120, 205302 (2018).
Han, J., Zhang, L. & E, W. Solving many-electron Schrödinger equation using deep neural networks. J. Comput. Phys. 399, 108929 (2019).
Pfau, D., Spencer, J. S., Matthews, A. G. d. G. & Foulkes, W. M. C. Ab-initio solution of the many-electron Schrödinger equation with deep neural networks. Preprint at http://arxiv.org/abs/1909.02487 (2019).
Brown, M. D., Trail, J. R., López Ríos, P. & Needs, R. J. Energies of the first row atoms from quantum Monte Carlo. J. Chem. Phys. 126, 224110 (2007).
Kato, T. On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957).
Ma, A., Towler, M. D., Drummond, N. D. & Needs, R. J. Scheme for adding electron-nucleus cusps to Gaussian orbitals. J. Chem. Phys. 122, 224322 (2005).
Motta, M. et al. Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods. Phys. Rev. X 7, 031059 (2017).
Lyakh, D. I., Musiał, M., Lotrich, V. F. & Bartlett, R. J. Multireference nature of chemistry: the coupled-cluster view. Chem. Rev. 112, 182–243 (2012).
Neuscamman, E., Umrigar, C. J. & Chan, G. K.-L. Optimizing large parameter sets in variational quantum Monte Carlo. Phys. Rev. B 85, 045103 (2012).
Gasperich, K., Deible, M. & Jordan, K. D. H4: a model system for assessing the performance of diffusion Monte Carlo calculations using a single Slater determinant trial function. J. Chem. Phys. 147, 074106 (2017).
Casalegno, M., Mella, M. & Rappe, A. M. Computing accurate forces in quantum Monte Carlo using Pulay’s corrections and energy minimization. J. Chem. Phys. 118, 7193 (2003).
Seth, P., Ríos, P. L. & Needs, R. J. Quantum Monte Carlo study of the first-row atoms and ions. J. Chem. Phys. 134, 084105 (2011).
Toulouse, J. & Umrigar, C. J. Full optimization of Jastrow–Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules. J. Chem. Phys. 128, 174101 (2008).
Filippi, C. & Umrigar, C. J. Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules. J. Chem. Phys. 105, 213–226 (1996).
Umrigar, C. J., Nightingale, M. P. & Runge, K. J. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99, 2865–2890 (1993).
Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR, 2015); https://dblp.org/rec/journals/corr/KingmaB14.html
Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In 7th International Conference on Learning Representations (ICLR, 2019); https://openreview.net/forum?id=Bkg6RiCqY7
Ceperley, D., Chester, G. V. & Kalos, M. H. Monte Carlo simulation of a many-fermion study. Phys. Rev. B 16, 3081–3099 (1977).
Smith, L. N. Cyclical learning rates for training neural networks. In Winter Conference on Applications of Computer Vision 464–472 (IEEE, 2017); https://ieeexplore.ieee.org/document/7926641
Unke, O. T. & Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).
Paszke, A. et al. In Advances in Neural Information Processing Systems 8026–8037 (Curran Associates, 2019); http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library
Sun, Q. et al. PySCF: the Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 8, e1340 (2018).
Hermann, J., Schätzle, Z. & Noé, F. Raw data for “Deep neural network solution of the electronic Schrödinger equation”. Figshare https://doi.org/10.6084/m9.figshare.12720569.v2 (2020).
Hermann, J., Schätzle, Z. & Noé, F. Deepqmc 0.1.1. Zenodo https://doi.org/10.5281/zenodo.3960827 (2020).
Hermann, J., Schätzle, Z. & Noé, F. Code for “Deep neural network solution of the electronic Schrödinger equation”. Figshare https://doi.org/10.6084/m9.figshare.12720833.v1 (2020).
Acknowledgements
We thank C. Clementi (Rice, FU Berlin), J. Eisert (FU Berlin), G. Scuseria (Rice), J. Neugebauer (MPIE) and H. Wu (Tongji) for inspiring discussions. Funding is acknowledged from the European Commission (ERC CoG 772230 ‘Scale-Cell’), Deutsche Forschungsgemeinschaft (CRC1114/A04, GRK2433 DAEDALUS/P04) and the MATH+ Berlin Mathematics Research Center (AA1x6, EF1x2). J.H. thanks K.-R. Müller for support and acknowledges funding from TU Berlin.
Author information
Authors and Affiliations
Contributions
J.H. and F.N. designed the research. J.H. developed the method with contributions from F.N. and Z.S.; J.H. wrote the computer code with contributions from Z.S.; J.H. and Z.S. carried out the numerical calculations. All authors analysed the data. J.H. and F.N. wrote the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data
Extended Data Fig. 1
Variational correlation energy (%) of five test systems obtained with four types of trial wave functions.
Extended Data Fig. 2
Hyperparameters used in numerical calculations.
Source data
Source Data Fig. 3
Processed source data.
Source Data Fig. 4
Processed source data.
Source Data Fig. 5
Processed source data.
Source Data Fig. 6
Processed source data.
Source Data Fig. 7
Processed source data.
Rights and permissions
About this article
Cite this article
Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020). https://doi.org/10.1038/s41557-020-0544-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-020-0544-y
This article is cited by
-
Stochastic representation of many-body quantum states
Nature Communications (2023)
-
GS-DeepNet: mastering tokamak plasma equilibria with deep neural networks and the Grad–Shafranov equation
Scientific Reports (2023)
-
Ab initio quantum chemistry with neural-network wavefunctions
Nature Reviews Chemistry (2023)
-
Electronic excited states in deep variational Monte Carlo
Nature Communications (2023)
-
Organic reaction mechanism classification using machine learning
Nature (2023)