Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep-neural-network solution of the electronic Schrödinger equation

Abstract

The electronic Schrödinger equation can only be solved analytically for the hydrogen atom, and the numerically exact full configuration-interaction method is exponentially expensive in the number of electrons. Quantum Monte Carlo methods are a possible way out: they scale well for large molecules, they can be parallelized and their accuracy has, as yet, been only limited by the flexibility of the wavefunction ansatz used. Here we propose PauliNet, a deep-learning wavefunction ansatz that achieves nearly exact solutions of the electronic Schrödinger equation for molecules with up to 30 electrons. PauliNet has a multireference Hartree–Fock solution built in as a baseline, incorporates the physics of valid wavefunctions and is trained using variational quantum Monte Carlo. PauliNet outperforms previous state-of-the-art variational ansatzes for atoms, diatomic molecules and a strongly correlated linear H10, and matches the accuracy of highly specialized quantum chemistry methods on the transition-state energy of cyclobutadiene, while being computationally efficient.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Combinatorial explosion of the number of Slater determinants in quantum chemistry.
Fig. 2: Architecture of the newly developed PauliNet wavefunction ansatz.
Fig. 3: Performance of PauliNet with one and six determinants on atoms and diatomic molecules.
Fig. 4: Roles of backflow and multiple determinants in training of PauliNet ansatz.
Fig. 5: Convergence of PauliNet with the number of determinants.
Fig. 6: PauliNet captures strong correlation in H10 along the dissociation curve.
Fig. 7: Calculating the transition barrier of cyclobutadiene automerization.

Similar content being viewed by others

Data availability

All raw data were generated with the accompanying code and are available in Figshare (https://doi.org/10.6084/m9.figshare.12720569.v2)51. Processed data used to generate figures are both included with the code and provided with this paper as source data.

Code availability

All computer code developed in this work is released either in the general DeepQMC package available on Zenodo (https://doi.org/10.5281/zenodo.3960827)52 and developed on Github (https://github.com/deepqmc/deepqmc), or in the project-specific repository (https://doi.org/10.6084/m9.figshare.12720833.v1)53, both under the MIT license.

References

  1. Piela, L. Ideas of Quantum Chemistry 2nd edn (Elsevier, 2014).

  2. Morales, M. A., McMinis, J., Clark, B. K., Kim, J. & Scuseria, G. E. Multideterminant wave functions in quantum Monte Carlo. J. Chem. Theory Comput. 8, 2181–2188 (2012).

    Article  CAS  PubMed  Google Scholar 

  3. Troyer, M. & Wiese, U.-J. Computational complexity and fundamental limitations to fermionic quantum Monte Carlo simulations. Phys. Rev. Lett. 94, 170201 (2005).

    Article  PubMed  CAS  Google Scholar 

  4. Shavitt, I. & Bartlett, R. J. Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory (Cambridge Univ. Press, 2009).

  5. Booth, G. H., Thom, A. J. W. & Alavi, A. Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. J. Chem. Phys. 131, 054106 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. Thom, A. J. W. Stochastic coupled cluster theory. Phys. Rev. Lett. 105, 263004 (2010).

    Article  PubMed  CAS  Google Scholar 

  7. Choo, K., Mezzacapo, A. & Carleo, G. Fermionic neural-network states for ab-initio electronic structure. Nat. Commun. 11, 2368 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Foulkes, W. M. C., Mitas, L., Needs, R. J. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001).

    Article  CAS  Google Scholar 

  9. Needs, R. J., Towler, M. D., Drummond, N. D. & Ríos, P. L. Continuum variational and diffusion quantum Monte Carlo calculations. J. Phys. Condens. Matter 22, 023201 (2010).

    Article  CAS  PubMed  Google Scholar 

  10. Austin, B. M., Zubarev, D. Y. & Lester, W. A. Quantum Monte Carlo and related approaches. Chem. Rev. 112, 263–288 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Ambrosetti, A., Alfè, D., DiStasio, R. A. Jr & Tkatchenko, A. Hard numbers for large molecules: toward exact energetics for supramolecular systems. J. Phys. Chem. Lett. 5, 849–855 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Zen, A. et al. Fast and accurate quantum Monte Carlo for molecular crystals. Proc. Natl Acad. Sci. USA 115, 1724–1729 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. López Ríos, P., Ma, A., Drummond, N. D., Towler, M. D. & Needs, R. J. Inhomogeneous backflow transformations in quantum Monte Carlo calculations. Phys. Rev. E 74, 066701 (2006).

    Article  CAS  Google Scholar 

  14. Feynman, R. P. & Cohen, M. Energy spectrum of the excitations in liquid helium. Phys. Rev. 102, 1189–1204 (1956).

    Article  Google Scholar 

  15. Schmidt, K. E. & Pandharipande, V. R. New variational wave function for liquid 3He. Phys. Rev. B 19, 2504–2519 (1979).

    Article  CAS  Google Scholar 

  16. Luo, D. & Clark, B. K. Backflow transformations via neural networks for quantum many-body wave functions. Phys. Rev. Lett. 122, 226401 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  PubMed  CAS  Google Scholar 

  18. Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).

    Article  PubMed  CAS  Google Scholar 

  19. Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Bartók, A. P. et al. Machine learning unifies the modeling of materials and molecules. Sci. Adv. 3, e1701816 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Schütt, K. T., Sauceda, H. E., Kindermans, P.-J., Tkatchenko, A. & Müller, K.-R. SchNet — a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).

    Article  PubMed  CAS  Google Scholar 

  23. Faber, F. A., Christensen, A. S., Huang, B. & von Lilienfeld, O. A. Alchemical and structural distribution based representation for universal quantum machine learning. J. Chem. Phys. 148, 241717 (2018).

    Article  PubMed  CAS  Google Scholar 

  24. Welborn, M., Cheng, L. & Miller, T. F. Transferability in machine learning for electronic structure via the molecular orbital basis. J. Chem. Theory Comput. 14, 4772–4779 (2018).

    Article  CAS  PubMed  Google Scholar 

  25. Grisafi, A. et al. Transferable machine-learning model of the electron density. ACS Cent. Sci. 5, 57–64 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Schütt, K. T., Gastegger, M., Tkatchenko, A., Müller, K.-R. & Maurer, R. J. Unifying machine learning and quantum chemistry with a deep neural network for molecular wavefunctions. Nat. Commun. 10, 5024 (2019).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Carleo, G. & Troyer, M. Solving the quantum many-body problem with artificial neural networks. Science 355, 602–606 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Saito, H. Method to solve quantum few-body problems with artificial neural networks. J. Phys. Soc. Jpn 87, 074002 (2018).

    Article  Google Scholar 

  29. Ruggeri, M., Moroni, S. & Holzmann, M. Nonlinear network description for many-body quantum systems in continuous space. Phys. Rev. Lett. 120, 205302 (2018).

    Article  CAS  PubMed  Google Scholar 

  30. Han, J., Zhang, L. & E, W. Solving many-electron Schrödinger equation using deep neural networks. J. Comput. Phys. 399, 108929 (2019).

    Article  CAS  Google Scholar 

  31. Pfau, D., Spencer, J. S., Matthews, A. G. d. G. & Foulkes, W. M. C. Ab-initio solution of the many-electron Schrödinger equation with deep neural networks. Preprint at http://arxiv.org/abs/1909.02487 (2019).

  32. Brown, M. D., Trail, J. R., López Ríos, P. & Needs, R. J. Energies of the first row atoms from quantum Monte Carlo. J. Chem. Phys. 126, 224110 (2007).

    Article  CAS  PubMed  Google Scholar 

  33. Kato, T. On the eigenfunctions of many-particle systems in quantum mechanics. Commun. Pure Appl. Math. 10, 151–177 (1957).

    Article  Google Scholar 

  34. Ma, A., Towler, M. D., Drummond, N. D. & Needs, R. J. Scheme for adding electron-nucleus cusps to Gaussian orbitals. J. Chem. Phys. 122, 224322 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. Motta, M. et al. Towards the solution of the many-electron problem in real materials: equation of state of the hydrogen chain with state-of-the-art many-body methods. Phys. Rev. X 7, 031059 (2017).

    Google Scholar 

  36. Lyakh, D. I., Musiał, M., Lotrich, V. F. & Bartlett, R. J. Multireference nature of chemistry: the coupled-cluster view. Chem. Rev. 112, 182–243 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Neuscamman, E., Umrigar, C. J. & Chan, G. K.-L. Optimizing large parameter sets in variational quantum Monte Carlo. Phys. Rev. B 85, 045103 (2012).

    Article  CAS  Google Scholar 

  38. Gasperich, K., Deible, M. & Jordan, K. D. H4: a model system for assessing the performance of diffusion Monte Carlo calculations using a single Slater determinant trial function. J. Chem. Phys. 147, 074106 (2017).

    Article  PubMed  CAS  Google Scholar 

  39. Casalegno, M., Mella, M. & Rappe, A. M. Computing accurate forces in quantum Monte Carlo using Pulay’s corrections and energy minimization. J. Chem. Phys. 118, 7193 (2003).

    Article  CAS  Google Scholar 

  40. Seth, P., Ríos, P. L. & Needs, R. J. Quantum Monte Carlo study of the first-row atoms and ions. J. Chem. Phys. 134, 084105 (2011).

    Article  CAS  PubMed  Google Scholar 

  41. Toulouse, J. & Umrigar, C. J. Full optimization of Jastrow–Slater wave functions with application to the first-row atoms and homonuclear diatomic molecules. J. Chem. Phys. 128, 174101 (2008).

    Article  PubMed  CAS  Google Scholar 

  42. Filippi, C. & Umrigar, C. J. Multiconfiguration wave functions for quantum Monte Carlo calculations of first-row diatomic molecules. J. Chem. Phys. 105, 213–226 (1996).

    Article  CAS  Google Scholar 

  43. Umrigar, C. J., Nightingale, M. P. & Runge, K. J. A diffusion Monte Carlo algorithm with very small time-step errors. J. Chem. Phys. 99, 2865–2890 (1993).

    Article  CAS  Google Scholar 

  44. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. In 3rd International Conference on Learning Representations (ICLR, 2015); https://dblp.org/rec/journals/corr/KingmaB14.html

  45. Loshchilov, I. & Hutter, F. Decoupled weight decay regularization. In 7th International Conference on Learning Representations (ICLR, 2019); https://openreview.net/forum?id=Bkg6RiCqY7

  46. Ceperley, D., Chester, G. V. & Kalos, M. H. Monte Carlo simulation of a many-fermion study. Phys. Rev. B 16, 3081–3099 (1977).

    Article  CAS  Google Scholar 

  47. Smith, L. N. Cyclical learning rates for training neural networks. In Winter Conference on Applications of Computer Vision 464–472 (IEEE, 2017); https://ieeexplore.ieee.org/document/7926641

  48. Unke, O. T. & Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments, and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).

    Article  CAS  PubMed  Google Scholar 

  49. Paszke, A. et al. In Advances in Neural Information Processing Systems 8026–8037 (Curran Associates, 2019); http://papers.nips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library

  50. Sun, Q. et al. PySCF: the Python-based simulations of chemistry framework. WIREs Comput. Mol. Sci. 8, e1340 (2018).

    Article  CAS  Google Scholar 

  51. Hermann, J., Schätzle, Z. & Noé, F. Raw data for “Deep neural network solution of the electronic Schrödinger equation”. Figshare https://doi.org/10.6084/m9.figshare.12720569.v2 (2020).

  52. Hermann, J., Schätzle, Z. & Noé, F. Deepqmc 0.1.1. Zenodo https://doi.org/10.5281/zenodo.3960827 (2020).

  53. Hermann, J., Schätzle, Z. & Noé, F. Code for “Deep neural network solution of the electronic Schrödinger equation”. Figshare https://doi.org/10.6084/m9.figshare.12720833.v1 (2020).

Download references

Acknowledgements

We thank C. Clementi (Rice, FU Berlin), J. Eisert (FU Berlin), G. Scuseria (Rice), J. Neugebauer (MPIE) and H. Wu (Tongji) for inspiring discussions. Funding is acknowledged from the European Commission (ERC CoG 772230 ‘Scale-Cell’), Deutsche Forschungsgemeinschaft (CRC1114/A04, GRK2433 DAEDALUS/P04) and the MATH+ Berlin Mathematics Research Center (AA1x6, EF1x2). J.H. thanks K.-R. Müller for support and acknowledges funding from TU Berlin.

Author information

Authors and Affiliations

Authors

Contributions

J.H. and F.N. designed the research. J.H. developed the method with contributions from F.N. and Z.S.; J.H. wrote the computer code with contributions from Z.S.; J.H. and Z.S. carried out the numerical calculations. All authors analysed the data. J.H. and F.N. wrote the manuscript.

Corresponding authors

Correspondence to Jan Hermann or Frank Noé.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1

Variational correlation energy (%) of five test systems obtained with four types of trial wave functions.

Extended Data Fig. 2

Hyperparameters used in numerical calculations.

Source data

Source Data Fig. 3

Processed source data.

Source Data Fig. 4

Processed source data.

Source Data Fig. 5

Processed source data.

Source Data Fig. 6

Processed source data.

Source Data Fig. 7

Processed source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermann, J., Schätzle, Z. & Noé, F. Deep-neural-network solution of the electronic Schrödinger equation. Nat. Chem. 12, 891–897 (2020). https://doi.org/10.1038/s41557-020-0544-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0544-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing