Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition

Abstract

Chemical reactions that convert sp2 to sp3 hybridization have been demonstrated to be a fascinating yet challenging route to functionalize graphene. So far it has not been possible to precisely control the reaction sites nor their lateral order at the atomic/molecular scale. The application prospects have been limited for reactions that require long soaking, heating, electric pulses or probe-tip press. Here we demonstrate a spatially selective photocycloaddition reaction of a two-dimensional molecular network with defect-free basal plane of single-layer graphene. Directly visualized at the submolecular level, the cycloaddition is triggered by ultraviolet irradiation in ultrahigh vacuum, requiring no aid of the graphene Moiré pattern. The reaction involves both [2+2] and [2+4] cycloadditions, with the reaction sites aligned into a two-dimensional extended and well-ordered array, inducing a bandgap for the reacted graphene layer. This work provides a solid base for designing and engineering graphene-based optoelectronic and microelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic illustration for the photocycloaddition of the BCM layer with graphene on Cu(111).
Fig. 2: Self-assembled BCM network on the graphene–Cu(111) substrate.
Fig. 3: Cycloaddition of the BCM network on graphene–Cu(111).
Fig. 4: Vibrations and band structure of the BCM network on graphene–Cu(111).

Data availability

The methods and materials used in this study are available in the Supplementary Information. The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information. Correspondence and requests for materials should be addressed to M.Y, A.G., L.K or F. B.

References

  1. Geim, A. K. Graphene: status and prospects. Science 324, 1530–1534 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Patera, L. L. et al. Real-time imaging of adatom-promoted graphene growth on nickel. Science 359, 1243–1246 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. Schwierz, F. Graphene transistors. Nat. Nanotechnol. 5, 487–496 (2010).

    Article  CAS  PubMed  Google Scholar 

  4. Yan, L. et al. Chemistry and physics of a single atomic layer: strategies and challenges for functionalization of graphene and graphene-based materials. Chem. Soc. Rev. 41, 97–114 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Zhao, L. Y. et al. Visualizing individual nitrogen dopants in monolayer graphene. Science 333, 999–1003 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Ci, L. J. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010).

    Article  CAS  PubMed  Google Scholar 

  7. Nair, M. N. et al. High van Hove singularity extension and Fermi velocity increase in epitaxial graphene functionalized by intercalated gold clusters. Phys. Rev. B 85, 245421–245426 (2012).

    Article  CAS  Google Scholar 

  8. Bai, J. W. et al. Graphene nanomesh. Nat. Nanotechnol. 5, 190–194 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Treier, M. et al. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nat. Chem. 3, 61–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Palma, C. A. et al. Photoinduced C–C reactions on insulators toward photolithography of graphene nanoarchitectures. J. Am. Chem. Soc. 136, 4651–4658 (2014).

    Article  CAS  PubMed  Google Scholar 

  11. Narita, A. et al. Synthesis of structurally well-defined and liquid-phase-processable graphene nanoribbons. Nat. Chem. 6, 126–132 (2014).

    Article  CAS  PubMed  Google Scholar 

  12. Cai, J. M. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).

    Article  CAS  PubMed  Google Scholar 

  13. Chen, Y. C. et al. Molecular bandgap engineering of bottom-up synthesized graphene nanoribbon heterojunctions. Nat. Nanotechnol. 10, 156–160 (2015).

    Article  CAS  PubMed  Google Scholar 

  14. Han, P. et al. Self-assembly strategy for fabricating connected graphene nanoribbons. ACS Nano 9, 12035–12044 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Chen, Z. P. et al. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 138, 15488–15496 (2016).

    Article  CAS  PubMed  Google Scholar 

  17. Nguyen, G. D. et al. Atomically precise graphene nanoribbon heterojunctions from a single molecular precursor. Nat. Nanotech. 12, 1077–1082 (2017).

    Article  CAS  Google Scholar 

  18. Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    Article  CAS  PubMed  Google Scholar 

  19. Elias, D. C. et al. Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323, 610–613 (2009).

    Article  CAS  PubMed  Google Scholar 

  20. Balog, R. et al. Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Jørgensen, J. H. et al. Symmetry-driven band gap engineering in hydrogen functionalized graphene. ACS Nano 10, 10798–10807 (2016).

    Article  PubMed  CAS  Google Scholar 

  22. Li, H. et al. Site-selective local fluorination of graphene induced by focused ion beam irradiation. Sci. Rep. 6, 19719 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Altenburg, S. J., Lattelais, M., Wang, B., Bocquet, M. L. & Berndt, R. Reaction of phthalocyanines with graphene on Ir(111). J. Am. Chem. Soc. 137, 9452–9458 (2015).

    Article  CAS  PubMed  Google Scholar 

  24. Greenwood, J. et al. Covalent modification of graphene and graphite using diazonium chemistry: tunable grafting and nanomanipulation. ACS Nano 9, 5520–5535 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. He, Y. Q. et al. Fusing tetrapyrroles to graphene edges by surface-assisted covalent coupling. Nat. Chem. 9, 33–38 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Daukiya, L. et al. Covalent functionalization by cycloaddition reactions of pristine defect-free graphene. ACS Nano 11, 627–634 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. Criado, A., Melchionna, M., Marchesan, S. & Prato, M. The covalent functionalization of graphene on substrates. Angew. Chem. Int. Ed. 54, 10734–10750 (2015).

    Article  CAS  Google Scholar 

  28. Bian, S. et al. Covalently patterned graphene surfaces by a force-accelerated Diels–Alder reaction. J. Am. Chem. Soc. 135, 9240–9243 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Cao, Y., Osuna, S., Liang, Y., Haddon, R. C. & Houk, K. N. Diels–Alder reactions of graphene: computational predictions of products and sites of reaction. J. Am. Chem. Soc. 135, 17643–17649 (2013).

    Article  CAS  PubMed  Google Scholar 

  30. Navarro, J. J. et al. Organic covalent patterning of nanostructured graphene with selectivity at the atomic level. Nano Lett. 16, 355–361 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Navarro, J. J., Calleja, F., Miranda, R. E., Pérez, M. & Vázquez de Parga, A. L. High yielding and extremely site-selective covalent functionalization of graphene. Chem. Commun. 53, 10418–10421 (2017).

    Article  CAS  Google Scholar 

  32. Liu, L. H., Lerner, M. M. & Yan, M. Derivitization of pristine graphene with well-defined chemical functionalities. Nano Lett. 10, 3754–3756 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Denis, P. A. & Iribarne, F. Cooperative behavior in functionalized graphene: explaining the occurrence of 1,3 cycloaddition of azomethine ylides onto graphene. Chem. Phys. Lett. 550, 111–117 (2012).

    Article  CAS  Google Scholar 

  34. MacLeod, J. M. & Rosei, F. Molecular self-assembly on graphene. Small 10, 1038–1049 (2014).

    Article  CAS  PubMed  Google Scholar 

  35. Kelly, R. E. A. & Kantorovich, L. Planar nucleic acid base super-structures. J. Mater. Chem. 16, 1984–1905 (2006).

    Article  CAS  Google Scholar 

  36. Wang, Q. H. et al. Understanding and controlling the substrate effect on graphene electron-transfer chemistry via reactivity imprint lithography. Nat. Chem. 4, 724–732 (2012).

    Article  CAS  PubMed  Google Scholar 

  37. Khomyakov, P. A. et al. First-principles study of the interaction and charge transfer between graphene and metals. Phys. Rev. B 79, 195425–195436 (2009).

    Article  CAS  Google Scholar 

  38. Laegsgaard, E. et al. A high-pressure scanning tunneling microscope. Rev. Sci. Instrum. 72, 3537–3542 (2001).

    Article  CAS  Google Scholar 

  39. Shen, K. et al. Fabricating quasi-free-standing graphene on a SiC(0001) surface by steerable intercalation of iron. J. Phys. Chem. C 122, 21484–21492 (2018).

    Article  CAS  Google Scholar 

  40. Kresse, G. et al. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  41. Perdew, J. P. et al. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  PubMed  Google Scholar 

  42. Grimme, S. et al. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  CAS  Google Scholar 

  43. Vande Vondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    Article  CAS  Google Scholar 

  44. Hutter, J. et al. CP2K: atomistic simulations of condensed matter systems. WIREs Comput. Mol. Sci. 4, 15–25 (2014).

    Article  CAS  Google Scholar 

  45. Jónsson, H., Mills, G. & Jacobsen, K. W. in Classical and Quantum Dynamics in Condensed Phase Simulations (eds Berne, B. J., Ciccotti, G. & Coker, D. F.) 385–404 (World Scientific, 1998).

  46. Henkelman, G. & Jonson, H. A climbing image nudged elastic band method finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (grant nos. 21473045, 51772066, 21603086, U1930402), the Engineering and Physical Sciences Research Council (grant nos. EP/L000202, EP/P020194), and the State Key Laboratory of Urban Water Resource and Environment (grant no. 2018DX04). We acknowledge X. Yang (Dalian Institute of Chemical Physics, Chinese Academy of Sciences) for the initial idea of triggering the reaction by ultraviolet irradiation and useful discussion. We also acknowledge the computational support from the Beijing Computational Science Research Center. F.R. acknowledges partial salary support from the Canada Research Chairs programme.

Author information

Authors and Affiliations

Authors

Contributions

A.G., M.Y. and F.B. designed the project. C.M. and A.G. synthesized the BCM molecule. C.C., G.S., S.W. and Z.L. conducted the graphene growth/BCM–graphene reaction/STM imaging/Raman analysis. W.H., C.C. and M.C. collected the IRAS results. K.S., F.S., Z.L. and J.P. carried out the ARPES studies. Q.L., L.K., H.S., P.D. and P.G. performed the calculations. M.Y., C.C., Y.S., M.C., F.R., L.K. and F. S. analysed and interpreted the results. M.Y., C.C., L.K. and F.R. wrote the manuscript. F.B. advised the project process.

Corresponding authors

Correspondence to Miao Yu, André Gourdon, Lev Kantorovich or Flemming Besenbacher.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15, Discussion and Tables 1–3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, M., Chen, C., Liu, Q. et al. Long-range ordered and atomic-scale control of graphene hybridization by photocycloaddition. Nat. Chem. 12, 1035–1041 (2020). https://doi.org/10.1038/s41557-020-0540-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0540-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing