Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Meta-DNA structures

An Author Correction to this article was published on 24 November 2020

This article has been updated

Abstract

DNA origami has emerged as a highly programmable method to construct customized objects and functional devices in the 10–100 nm scale. Scaling up the size of the DNA origami would enable many potential applications, which include metamaterial construction and surface-based biophysical assays. Here we demonstrate that a six-helix bundle DNA origami nanostructure in the submicrometre scale (meta-DNA) could be used as a magnified analogue of single-stranded DNA, and that two meta-DNAs that contain complementary ‘meta-base pairs’ can form double helices with programmed handedness and helical pitches. By mimicking the molecular behaviours of DNA strands and their assembly strategies, we used meta-DNA building blocks to form diverse and complex structures on the micrometre scale. Using meta-DNA building blocks, we constructed a series of DNA architectures on a submicrometre-to-micrometre scale, which include meta-multi-arm junctions, three-dimensional (3D) polyhedrons, and various 2D/3D lattices. We also demonstrated a hierarchical strand-displacement reaction on meta-DNA to transfer the dynamic features of DNA into the meta-DNA. This meta-DNA self-assembly concept may transform the microscopic world of structural DNA nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design and characterization of dsM-DNA.
Fig. 2: M-junctions and M-DX structures.
Fig. 3: Self-folded, self-linked M-DNA structures and self-assembled 3D polyhedrons.
Fig. 4: Self-assembly of 1D, 2D and 3D M-DNA micrometre-scale structures based on the M-SST assembly strategy.
Fig. 5: M-DNA-based strand displacement.

Similar content being viewed by others

Swarup Dey, Chunhai Fan, … Pengfei Zhan

Data availability

All the data are available within this paper and its Supplementary Information. All the data are also available from the corresponding authors upon request.

Code availability

The code used for the ox-DNA simulation is available from the corresponding authors upon request.

Change history

References

  1. Watson, J. D. & Crick, F. H. C. Molecular structure of nucleic acids: a structure for deoxyribose nucleic acid. Nature 171, 737–738 (1953).

    Article  CAS  PubMed  Google Scholar 

  2. Seeman, N. C. Nucleic acid junctions and lattices. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  PubMed  Google Scholar 

  3. Rothemund, P. W. Folding DNA to create nanoscale shapes and patterns. Nature 440, 297–302 (2006).

    Article  CAS  PubMed  Google Scholar 

  4. Sun, W. et al. Casting inorganic structures with DNA molds. Science 346, 1258361 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Liu, X. et al. Complex silica composite nanomaterials templated with DNA origami. Nature 559, 593–598 (2018).

    Article  CAS  PubMed  Google Scholar 

  6. Douglas, S. M., Bachelet, I. & Church, G. M. A logic-gated nanorobot for targeted transport of molecular payloads. Science 335, 831–834 (2012).

    Article  CAS  PubMed  Google Scholar 

  7. Li, S. et al. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol. 36, 258–264 (2018).

    Article  CAS  PubMed  Google Scholar 

  8. Zhang, H. et al. Folding super-sized DNA origami with scaffold strands from long-range PCR. Chem. Commun. 48, 6405–6407 (2012).

    Article  CAS  Google Scholar 

  9. Marchi, A. N., Saaem, I., Vogen, B. N., Brown, S. & LaBean, T. H. Toward larger DNA origami. Nano Lett. 14, 5740–5747 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Zhao, Z., Yan, H. & Liu, Y. A route to scale up DNA origami using DNA tiles as folding staples. Angew. Chem. Int. Ed. 49, 1414–1417 (2010).

    Article  CAS  Google Scholar 

  11. Zhao, Z., Liu, Y. & Yan, H. Organizing DNA origami tiles into larger structures using preformed scaffold frames. Nano Lett. 11, 2997–3002 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pinheiro, A. V., Han, D., Shih, W. M. & Yan, H. Challenges and opportunities for structural DNA nanotechnology. Nat. Nanotechnol. 6, 763–772 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Iinuma, R. et al. Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344, 65–69 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Liu, W., Zhong, H., Wang, R. & Seeman, N. C. Crystalline two-dimensional DNA-origami arrays. Angew. Chem. Int. Ed. 50, 264–267 (2011).

    Article  CAS  Google Scholar 

  15. Wang, P. et al. Programming self-assembly of DNA origami honeycomb two-dimensional lattices and plasmonic metamaterials. J. Am. Chem. Soc. 138, 7733–7740 (2016).

    Article  CAS  PubMed  Google Scholar 

  16. Tikhomirov, G., Petersen, P. & Qian, L. Fractal assembly of micrometre-scale DNA origami arrays with arbitrary patterns. Nature 552, 67–71 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Wagenbauer, K. F., Sigl, C. & Dietz, H. Gigadalton-scale shape-programmable DNA assemblies. Nature 552, 78–83 (2017).

    Article  CAS  PubMed  Google Scholar 

  18. Liedl, T., Högberg, B., Tytell, J., Ingber, D. E. & Shih, W. M. Self-assembly of three-dimensional prestressed tensegrity structures from DNA. Nat. Nanotechnol. 5, 520 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kauert, D. J., Kurth, T., Liedl, T. & Seidel, R. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 11, 5558–5563 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Lee, C., Kim, K. S., Kim, Y.-J., Lee, J. Y. & Kim, D.-N. Tailoring the mechanical stiffness of DNA nanostructures using engineered defects. ACS Nano 13, 8329–8336 (2019).

    Article  CAS  PubMed  Google Scholar 

  21. Zhang, D. Y. & Yurke, B. A. A DNA superstructure-based replicator without product inhibition. Nat. Comput. 5, 183–202 (2006).

    Article  CAS  Google Scholar 

  22. Chandran, H., Gopalkrishnan, N., Yurke, B. & Reif, J. Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions. J. R. Soc. Interface 9, 1637–1653 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chandran, H., Gopalkrishnan, N., Yurke, B. & Reif, J. in A Systems Theoretic Approach to Systems and Synthetic Biology II: Analysis and Design of Cellular Systems (eds Kulkarni, V., Stan, G. B. & Raman, K.) 171–200 (2014).

  24. Woo, S. & Rothemund, P. W. K. Programmable molecular recognition based on the geometry of DNA nanostructures. Nat. Chem. 3, 620–627 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Petersen, P., Tikhomirov, G. & Qian, L. Information-based autonomous reconfiguration in systems of interacting DNA nanostructures. Nat. Commun. 9, 5362 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doye, J. P. et al. Coarse-graining DNA for simulations of DNA nanotechnology. Phys. Chem. Chem. Phys. 15, 20395–20414 (2013).

    Article  CAS  PubMed  Google Scholar 

  27. Studdert, D. S., Patroni, M. & Davis, R. C. Circular dichroism of DNA: temperature and salt dependence. Biopolymers 11, 761–779 (1972).

    Article  CAS  PubMed  Google Scholar 

  28. Siavashpouri, M. et al. Molecular engineering of chiral colloidal liquid crystals using DNA origami. Nat. Mater. 16, 849–856 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. Liu, Y., Ke, Y. & Yan, H. Self-assembly of symmetric finite-size DNA nanoarrays. J. Am. Chem. Soc. 127, 17140–17141 (2005).

    Article  CAS  PubMed  Google Scholar 

  30. Han, D. et al. Single-stranded DNA and RNA origami. Science 358, eaao2648 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Nguyen, L., Döblinger, M., Liedl, T. & Heuer-Jungemann, A. DNA-origami-templated silica growth by sol–gel chemistry. Angew. Chem. Int. Ed. 58, 912–916 (2019).

    Article  CAS  Google Scholar 

  32. Ke, Y., Ong, L. L., Shih, W. M. & Yin, P. Three-dimensional structures self-assembled from DNA bricks. Science 338, 1177–1183 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. Wei, B., Dai, M. & Yin, P. Complex shapes self-assembled from single-stranded DNA tiles. Nature 485, 623–626 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, D. Y. & Winfree, E. Control of DNA strand displacement kinetics using toehold exchange. J. Am. Chem. Soc. 131, 17303–17314 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. Kallenbach, N. R., Ma, R.-I. & Seeman, N. C. An immobile nucleic acid junction constructed from oligonucleotides. Nature 305, 829–831 (1983).

    Article  CAS  Google Scholar 

  36. Fu, T. J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

    Article  CAS  PubMed  Google Scholar 

  37. Geary, C., Rothemund, P. W. & Andersen, E. S. RNA nanostructures. A single-stranded architecture for cotranscriptional folding of RNA nanostructures. Science 345, 799–804 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. Gerling, T., Wagenbauer, K. F., Neuner, A. M. & Dietz, H. Dynamic DNA devices and assemblies formed by shape-complementary, non-base pairing 3D components. Science 347, 1446–1452 (2015).

    Article  CAS  PubMed  Google Scholar 

  39. Kilchherr, F. et al. Single-molecule dissection of stacking forces in DNA. Science 353, aaf5508 (2016).

    Article  PubMed  CAS  Google Scholar 

  40. Zhou, T. et al. pH-responsive size-tunable self-assembled DNA dendrimers. Angew. Chem. Int. Ed. 51, 11271–11274 (2012).

    Article  CAS  Google Scholar 

  41. Yang, Y., Endo, M., Hidaka, K. & Sugiyama, H. Photo-controllable DNA origami nanostructures assembling into predesigned multiorientational patterns. J. Am. Chem. Soc. 134, 20645–20653 (2012).

    Article  CAS  PubMed  Google Scholar 

  42. Praetorius, F. et al. Biotechnological mass production of DNA origami. Nature 552, 84–87 (2017).

    Article  CAS  PubMed  Google Scholar 

  43. Qi, X. et al. Programming molecular topologies from single-stranded nucleic acids. Nat. Commun. 9, 4579 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Zhang, D. Y., Turberfield, A. J., Yurke, B. & Winfree, E. Engineering entropy-driven reactions and networks catalyzed by DNA. Science 318, 1121–1125 (2007).

    Article  CAS  PubMed  Google Scholar 

  45. Thubagere, A. J. et al. A cargo-sorting DNA robot. Science 357, eaan6558 (2017).

    Article  PubMed  CAS  Google Scholar 

  46. Qian, L. & Winfree, E. Scaling up digital circuit computation with DNA strand displacement cascades. Science 332, 1196–1201 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank K. S. Kim, C. Lee and D.-N. Kim for the help of persistence length calculating. The authors thank D. Lowry for help with the TEM imaging and K. Lee for editing the paper. This work was financially supported by the US National Science Foundation, National Key R&D Program of China (2018YFA0902600), NSFC (21991134, 21834007, 21904060 and 21675167), the innovative research team of high-level local universities in Shanghai and the K. C. Wong Foundation at Shanghai Jiao Tong University.

Author information

Authors and Affiliations

Authors

Contributions

G.Y., C.F. and H.Y. conceived the project. G.Y., T.P., F.W., S.J., L.L. and C.G. performed the research. H.L., E.P. and P.Š. performed the oxDNA simulation. X.J., X.L. and L.W. helped with the polyhedron silicification. G.Y., F.Z., Y.L., C.F. and H.Y. wrote the manuscript.

Corresponding authors

Correspondence to Chunhai Fan or Hao Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–100, Tables 1–80 and Sequences 1–6.

Supplementary Video 1

Dynamic animation of unwrapped ds-M-DNA of left-handed 660° design.

Supplementary Video 2

Dynamic animation of wrapped ds-M-DNA of left-handed 660° design.

Supplementary Video 3

Dynamic animation of unwrapped ds-M-DNA of right-handed 660° design.

Supplementary Video 4

Dynamic animation of wrapped ds-M-DNA of right-handed 660° design.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, G., Zhang, F., Wang, F. et al. Meta-DNA structures. Nat. Chem. 12, 1067–1075 (2020). https://doi.org/10.1038/s41557-020-0539-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0539-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing