Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Post-translational formation of strained cyclophanes in bacteria

Abstract

Cyclic peptide natural products have served as important drug molecules, with several examples used clinically. Enzymatic or chemical macrocyclization is the key transformation for constructing these chemotypes. Methods to generate new and diverse cyclic peptide scaffolds enabling the modular and predictable synthesis of peptide libraries are desirable in drug discovery platforms. Here we identify a suite of post-translational modifying enzymes from bacteria that install single or multiple strained cyclophane macrocycles. The crosslinking occurs on three-residue motifs that include tryptophan or phenylalanine to form indole- or phenyl-bridged cyclophanes. The macrocycles display restricted rotation of the aromatic ring and induce planar chirality in the asymmetric indole bridge. The biosynthetic gene clusters originate from a broad range of bacteria derived from marine, terrestrial and human microbiomes. Three-residue cyclophane-forming enzymes define a new and significant natural product family and occupy a distinct region in sequence–function space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Cyclophane natural products, their sources and associated enzymes.
Fig. 2: Maturase systems, biosynthetic gene clusters and strains of origin.
Fig. 3: Detection and characterization of the Xnc product.
Fig. 4: Detection of activity and characterization of modifications by OscB.
Fig. 5: Protein sequence similarity network for selected SPASM protein families.
Fig. 6: Detection of activity and characterization of the MscB product.
Fig. 7: Production of xenorceptide derived from the xnc gene cluster.

Similar content being viewed by others

Data availability

The data analysed and used to support this study can be found within the main text, supporting information or from the corresponding author upon reasonable request.

References

  1. White, C. J. & Yudin, A. K. Contemporary strategies for peptide macrocyclization. Nat. Chem. 3, 509–524 (2011).

    CAS  PubMed  Google Scholar 

  2. Vinogradov, A. A., Yin, Y. & Suga, H. Macrocyclic peptides as drug candidates: recent progress and remaining challenges. J. Am. Chem. Soc. 141, 4167–4181 (2019).

    CAS  PubMed  Google Scholar 

  3. Arnison, P. G. et al. Ribosomally synthesized and post-translationally modified peptide natural products: overview and recommendations for a universal nomenclature. Nat. Prod. Rep. 30, 108–160 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Repka, L. M., Chekan, J. R., Nair, S. K. & van der Donk, W. A. Mechanistic understanding of lanthipeptide biosynthetic enzymes. Chem. Rev. 117, 5457–5520 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Flühe, L. & Marahiel, M. A. Radical S-adenosylmethionine enzyme catalyzed thioether bond formation in sactipeptide biosynthesis. Curr. Opin. Chem. Biol. 17, 605–612 (2013).

    PubMed  Google Scholar 

  6. Hudson, G. A. et al. Bioinformatic mapping of radical S-adenosylmethionine-dependent ribosomally synthesized and post-translationally modified peptides identifies new Cα, Cβ, and Cγ-linked thioether-containing peptides. J. Am. Chem. Soc. 141, 8228–8238 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Ramalho, S. D., Pinto, M. E. F., Ferreira, D. & Bolzani, V. S. Biologically active orbitides from the Euphorbiaceae family. Planta Med. 84, 558–567 (2018).

    CAS  PubMed  Google Scholar 

  8. Craik, D. J., Daly, N. L., Bond, T. & Waine, C. Plant cyclotides: a unique family of cyclic and knotted proteins that defines the cyclic cystine knot structural motif. J. Mol. Biol. 294, 1327–1336 (1999).

    CAS  PubMed  Google Scholar 

  9. Gu, W., Dong, S.-H., Sarkar, S., Nair, S. K. & Schmidt, E. W. The biochemistry and structural biology of cyanobactin pathways: enabling combinatorial biosynthesis. Methods Enzymol. 604, 113–163 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Bagley, M. C., Dale, J. W., Merritt, E. A. & Xiong, X. Thiopeptide antibiotics. Chem. Rev. 105, 685–714 (2005).

    CAS  PubMed  Google Scholar 

  11. Zheng, Q., Fang, H. & Liu, W. Post-translational modifications involved in the biosynthesis of thiopeptide antibiotics. Org. Biomol. Chem. 15, 3376–3390 (2017).

    CAS  PubMed  Google Scholar 

  12. Craik, D. J., Fairlie, D. P., Liras, S. & Price, D. The future of peptide-based drugs. Chem. Biol. Drug Des. 81, 136–147 (2013).

    CAS  PubMed  Google Scholar 

  13. Zorzi, A., Deyle, K. & Heinis, C. Cyclic peptide therapeutics: past, present and future. Curr. Opin. Chem. Biol. 38, 24–29 (2017).

    CAS  PubMed  Google Scholar 

  14. Umemura, M. et al. MIDDAS-M: motif-independent de novo detection of secondary metabolite gene clusters through the integration of genome sequencing and transcriptome data. PLoS ONE 8, e84028 (2013).

    PubMed  PubMed Central  Google Scholar 

  15. Umemura, M. et al. Characterization of the biosynthetic gene cluster for the ribosomally synthesized cyclic peptide ustiloxin B in Aspergillus flavus. Fungal Genet. Biol. 68, 23–30 (2014).

    CAS  PubMed  Google Scholar 

  16. Ye, Y. et al. Unveiling the biosynthetic pathway of the ribosomally synthesized and post-translationally modified peptide ustiloxin b in filamentous fungi. Angew. Chem. Int. Ed. 55, 8072–8075 (2016).

    CAS  Google Scholar 

  17. Ding, W. et al. Biosynthetic investigation of phomopsins reveals a widespread pathway for ribosomal natural products in Ascomycetes. Proc. Natl Acad. Sci.USA 113, 3521–3526 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Nagano, N. et al. Class of cyclic ribosomal peptide synthetic genes in filamentous fungi. Fungal Genet. Biol. 86, 58–70 (2016).

    CAS  PubMed  Google Scholar 

  19. Ye, Y. et al. Heterologous production of asperipin-2a: proposal for sequential oxidative macrocyclization by a fungi-specific DUF3328 oxidase. Org. Biomol. Chem. 17, 39–43 (2019).

    CAS  Google Scholar 

  20. Tan, N.-H. & Zhou, J. Plant cyclopeptides. Chem. Rev. 106, 840–895 (2006).

    CAS  PubMed  Google Scholar 

  21. Han, B. H., Park, M. H. & Han, Y. N. Cyclic peptide and peptide alkaloids from seeds of Zizyphus vulgaris. Phytochemistry 29, 3315–3319 (1990).

    CAS  Google Scholar 

  22. Pandey, M. B., Singh, A. K., Singh, J. P., Singh, V. P. & Pandey, V. B. Three new cyclopeptide alkaloids from Zizyphus species. J. Asian Nat. Prod. Res. 10, 709–713 (2008).

    CAS  Google Scholar 

  23. Yoshikawa, K., Tao, S. & Arihara, S. Stephanotic acid, a novel cyclic pentapeptide from the stern of Stephanotis floribunda. J. Nat. Prod. 63, 540–542 (2000).

    CAS  PubMed  Google Scholar 

  24. Broderick, J. B., Duffus, B. R., Duschene, K. S. & Shepard, E. M. Radical S-adenosylmethionine enzymes. Chem. Rev. 114, 4229–4317 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Schramma, K. R., Bushin, L. B. & Seyedsayamdost, M. R. Structure and biosynthesis of a macrocyclic peptide containing an unprecedented lysine-to-tryptophan crosslink. Nat. Chem. 7, 431–437 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bushin, L. B., Clark, K. A., Pelczer, I. & Seyedsayamdost, M. R. Charting an unexplored streptococcal biosynthetic landscape reveals a unique peptide cyclization motif. J. Am. Chem. Soc. 140, 17674–17684 (2018).

    CAS  PubMed  Google Scholar 

  27. Caruso, A., Martinie, R. J., Bushin, L. B. & Seyedsayamdost, M. R. Macrocyclization via an arginine–tyrosine crosslink broadens the reaction scope of radical S-adenosylmethionine enzymes. J. Am. Chem. Soc. 141, 16610–16614 (2019).

    CAS  PubMed  Google Scholar 

  28. Barr, I. et al. Demonstration that the radical S-adenosylmethionine (SAM) enzyme PqqE catalyzes de novo carbon–carbon cross-linking within a peptide substrate PqqA in the presence of the peptide chaperone PqqD. J. Biol. Chem. 291, 8877–8884 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhu, W., Martins, A. M. & Klinman, J. P. Methods for expression, purification, and characterization of PqqE, a radical SAM enzyme in the PQQ biosynthetic pathway. Methods Enzymol. 606, 389–420 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Forneris, C. C. & Seyedsayamdost, M. R. In vitro reconstitution of OxyC activity enables total chemo-enzymatic syntheses of vancomycin aglycone variants. Angew. Chem. Int. Ed. 57, 8048–8052 (2018).

    CAS  Google Scholar 

  31. Ozturk, S., Forneris, C. C., Nguy, A. K. L., Sorensen, E. J. & Seyedsayamdost, M. R. Modulating OxyB-catalyzed cross-coupling reactions in vancomycin biosynthesis by incorporation of diverse d-Tyr analogues. J. Org. Chem. 83, 7309–7317 (2018).

    CAS  PubMed  Google Scholar 

  32. Greule, A. et al. Kistamicin biosynthesis reveals the biosynthetic requirements for production of highly crosslinked glycopeptide antibiotics. Nat. Commun. 10, 2613 (2019).

    PubMed  PubMed Central  Google Scholar 

  33. Mahanta, N., Hudson, G. A. & Mitchell, D. A. Radical S-adenosylmethionine enzymes involved in RiPP biosynthesis. Biochemistry 56, 5229–5244 (2017).

    CAS  PubMed  Google Scholar 

  34. Morinaka, B. I. et al. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse d-amino acid patterns into peptide natural products. Angew. Chem. Int. Ed 53, 8503–8507 (2014).

    CAS  Google Scholar 

  35. Morinaka, B. I., Verest, M., Freeman, M. F., Gugger, M. & Piel, J. An orthogonal D2O-based induction system that provides insights into d-amino acid pattern formation by radical S-adenosylmethionine peptide epimerases. Angew. Chem. Int. Ed. 56, 762–766 (2017).

    CAS  Google Scholar 

  36. Freeman, M. F. et al. Metagenome mining reveals polytheonamides as posttranslationally modified ribosomal peptides. Science 338, 387–390 (2012).

    CAS  PubMed  Google Scholar 

  37. Haft, D. H., Basu, M. K. & Mitchell, D. A. Expansion of ribosomally produced natural products: a nitrile hydratase- and Nif11-related precursor family. BMC Biology 8, 70 (2010).

    PubMed  PubMed Central  Google Scholar 

  38. Morinaka, B. I. et al. Natural noncanonical protein splicing yields products with diverse β-amino acid residues. Science 359, 779–782 (2018).

    CAS  PubMed  Google Scholar 

  39. Grell, T. A. J., Goldman, P. J. & Drennan, C. L. SPASM and Twitch domains in S-adenosylmethionine (SAM) radical enzymes. J. Biol. Chem. 290, 3964–3971 (2015).

    CAS  PubMed  Google Scholar 

  40. Haft, D. H. & Basu, M. K. Biological systems discovery in silico: radical S-adenosylmethionine protein families and their target peptides for posttranslational modification. J. Bacteriol. 193, 2745–2755 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Haft, D. H., Selengut, J. D. & White, O. The TIGRFAMs database of protein families. Nucleic Acids Res. 31, 371–373 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Oman, T. J. & van der Donk, W. A. Follow the leader: the use of leader peptides to guide natural product biosynthesis. Nat. Chem. Biol. 6, 9–18 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gulder, T. & Baran, P. S. Strained cyclophane natural products: macrocyclization at its limits. Nat. Prod. Rep. 29, 899–934 (2012).

    CAS  PubMed  Google Scholar 

  44. Gerlt, J. A. Genomic enzymology: web tools for leveraging protein family sequence-function space and genome context to discover novel functions. Biochemistry 56, 4293–4308 (2017).

    CAS  PubMed  Google Scholar 

  45. Copp, J. N., Akiva, E., Babbitt, P. C. & Tokuriki, N. Revealing unexplored sequence-function space using sequence similarity networks. Biochemistry 57, 4651–4662 (2018).

    CAS  PubMed  Google Scholar 

  46. Mitchell, A. L. et al. InterPro in 2019: improving coverage, classification and access to protein sequence annotations. Nucleic Acids Res. 47, D351–D360 (2019).

    CAS  PubMed  Google Scholar 

  47. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Hooper, N. M. Families of zinc metalloproteases. FEBS Lett. 354, 1–6 (1994).

    CAS  PubMed  Google Scholar 

  49. Marfey, P. Determination of d-amino acids. II. Use of a bifunctional reagent, 1,5-difluoro-2,4-dinitrobenzene. Carlsberg Res. Commun. 49, 591–596 (1984).

    CAS  Google Scholar 

  50. Lei, M. et al. Discovery of a novel dipeptidyl boronic acid proteasome inhibitor for the treatment of multiple myeloma and triple-negative breast cancer. Org. Biomol. Chem. 17, 683–691 (2019).

    CAS  PubMed  Google Scholar 

  51. Forbes, C. R., Pandey, A. K., Ganguly, H. K., Yap, G. P. A. & Zondlo, N. J. 4R- and 4S-iodophenyl hydroxyproline, 4R-pentynoyl hydroxyproline, and S-propargyl-4-thiolphenylalanine: conformationally biased and tunable amino acids for bioorthogonal reactions. Org. Biomol. Chem. 14, 2327–2346 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen, K., Zhang, S.-Q., Xu, J.-W., Hu, F. & Shi, B.-F. A general and practical palladium-catalyzed monoarylation of β-methyl C(sp3)–H of alanine. Chem. Commun. 50, 13924–13927 (2014).

    CAS  Google Scholar 

  53. Tran, L. D. & Daugulis, O. Nonnatural amino acid synthesis by using carbon–hydrogen bond functionalization methodology. Angew. Chem. Int. Ed. 51, 5188–5191 (2012).

    CAS  Google Scholar 

  54. Reddy, B. V. S., Reddy, L. R. & Corey, E. J. Novel acetoxylation and C–C coupling reactions at unactivated positions in α-amino acid derivatives. Org. Lett. 8, 3391–3394 (2006).

    CAS  PubMed  Google Scholar 

  55. Bode, E. et al. Simple ‘on-demand’ production of bioactive natural products. ChemBioChem 16, 1115–1119 (2015).

    CAS  PubMed  Google Scholar 

  56. Zallot, R., Oberg, N. O. & Gerlt, J. A. ‘Democratized’ genomic enzymology web tools for functional assignment. Curr. Opin. Chem. Biol. 47, 77–85 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Forst, S., Dowds, B., Boemare, N. & Stackebrandt, E. Xenorhabdus and Photorhabdus spp.: bugs that kill bugs. Annu. Rev. Microbiol. 51, 47–72 (1997).

    CAS  PubMed  Google Scholar 

  58. Wren, B. W. The Yersiniae—a model genus to study the rapid evolution of bacterial pathogens. Nat. Rev. Microbiol. 1, 55–64 (2003).

    CAS  PubMed  Google Scholar 

  59. Scott, T. A. & Piel, J. The hidden enzymology of bacterial natural product biosynthesis. Nat. Rev. Chem. 3, 404–425 (2019).

    PubMed  PubMed Central  Google Scholar 

  60. Imai, Y. et al. A new antibiotic selectively kills Gram-negative pathogens. Nature 576, 459–464 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rice, J. E. et al. [5]Paracyclophane. An important example of ring strain and aromaticity in hydrocarbon compounds. J. Am. Chem. Soc. 109, 2902–2909 (1987).

    CAS  Google Scholar 

  62. Wang, W., Lorion, M. M., Shah, J., Kapdi, A. R. & Ackermann, L. Late-stage peptide diversification by position-selective C–H activation. Angew. Chem. Int. Ed. 57, 14700–14717 (2018).

    CAS  Google Scholar 

  63. Zhang, X. et al. A general strategy for synthesis of cyclophane-braced peptide macrocycles via palladium-catalysed intramolecular sp3 C-H arylation. Nat. Chem. 10, 540–548 (2018).

    CAS  PubMed  Google Scholar 

  64. Flühe, L. et al. Two [4Fe–4S] clusters containing radical SAM enzyme SkfB catalyze thioether bond formation during the maturation of the sporulation killing factor. J. Am. Chem. Soc. 135, 959–962 (2013).

    PubMed  Google Scholar 

  65. Nakai, T. et al. The radical S-Adenosyl-l-methionine enzyme QhpD catalyzes sequential formation of intra-protein sulfur-to-methylene carbon thioether bonds. J. Biol. Chem. 290, 11144–11166 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Grove, T. L. et al. Structural insights into thioether bond formation in the biosynthesis of sactipeptides. J. Am. Chem. Soc. 139, 11734–11744 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Bruender, N. A., Wilcoxen, J., Britt, R. D. & Bandarian, V. Biochemical and spectroscopic characterization of a radical S-adenosyl-l-methionine enzyme involved in the formation of a peptide thioether cross-link. Biochemistry 55, 2122–2134 (2016).

    CAS  PubMed  Google Scholar 

  68. Bruender, N. A. & Bandarian, V. The radical S-adenosyl-l-methionine enzyme MftC catalyzes an oxidative decarboxylation of the C-terminus of the MftA peptide. Biochemistry 55, 2813–2816 (2016).

    CAS  PubMed  Google Scholar 

  69. Khaliullin, B. et al. Mycofactocin biosynthesis: modification of the peptide MftA by the radical S-adenosylmethionine protein MftC. FEBS Lett. 590, 2538–2548 (2016).

    CAS  PubMed  Google Scholar 

  70. Benjdia, A., Guillot, A., Ruffié, P., Leprince, J. & Berteau, O. Post-translational modification of ribosomally synthesized peptides by a radical SAM epimerase in Bacillus subtilis. Nat. Chem. 9, 698–707 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank J. Wu and Y. Han for assistance with NMR experiments, H. Y. Chen and I. Y. F. Koh for assistance in preparation of the MscA variant, C. Kegler and H. B. Bode for the pCEP plasmid and E. coli S17-1λpir donor strain, X. Cai for helpful discussions, E. Danelius and T. Gonen for attempts to elucidate structures by MicroED and J. Piel for critical reading of the manuscript. We acknowledge funding from the Human Frontier Science Program and Japan Society for Promotion of Science to R.S., the Ministry of Education for research scholarships to M.P. and T.P.D.N. and the MOE NUS Start-up Grant (R-148-000-257-133), MOE Tier 1 Grants (R-148-000-258-114 and R-148-000-271-114) and MOE NUS Early Career Research Award (R-148-000-291-133) to B.I.M.

Author information

Authors and Affiliations

Authors

Contributions

T.Q.N.N., Y.W.T., R.H.S.Y., M.G. and B.I.M. performed bioinformatics and designed the experiments. T.Q.N.N., Y.W.T., T.P.D.N, M.P., L.C.L., K.H., R.H.S.Y., I.A. and B.I.M. performed coexpression experiments and acquired and analysed LC-MS data. T.Q.N.N., T.P.D.N, F.W., A.T.P. and B.I.M acquired and analysed NMR data. R.S. carried out heterologous expression experiments. T.Q.N.N. carried out promoter exchange experiments. T.Q.N.N and B.I.M carried out degradation and synthesis. T.Q.N.N., Y.W.T. and B.I.M. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Brandon I. Morinaka.

Ethics declarations

Competing interests

The authors T.Q.N.N, Y.W.T and B.I.M. are the inventors on International Patent Application No. PCT/SG2020/050303 submitted by the National University of Singapore, which covers the use of radical S-adenosylmethionine enzymes for introducing cyclophanes into polypeptides.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, spectral data, Figs. 1–46 and Tables 1–8 and 12.

Supplementary Table 9, 10, 11

Supplementary Tables 9–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.Q.N., Tooh, Y.W., Sugiyama, R. et al. Post-translational formation of strained cyclophanes in bacteria. Nat. Chem. 12, 1042–1053 (2020). https://doi.org/10.1038/s41557-020-0519-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0519-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing