Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Three concomitant C–C dissociation pathways during the mechanical activation of an N-heterocyclic carbene precursor

Abstract

Chemical reactions usually proceed through a radical, concerted or ionic mechanism; transformations in which all three mechanisms occur are rare. In polymer mechanochemistry, a mechanical force, transduced along polymer chains, is used to activate covalent bonds in mechanosensitive molecules (mechanophores). Cleavage of a C–C bond often follows a homolytic pathway, but some mechanophores have also been designed that react in a concerted or, more rarely, a heterolytic manner. Here, using 1H- and 19F-nuclear magnetic resonance spectroscopy in combination with deuterium labelling, we show that the dissociation of a mechanophore built around an N-heterocyclic carbene precursor proceeds with the rupture of a C–C bond through concomitant heterolytic, concerted and homolytic pathways. The distribution of products probably arises from a post-transition-state bifurcation in the reaction pathway, and their relative proportion is dictated by the polarization of the scissile C–C bond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The ultrasound activation of NHC precursor 1H proceeds via three concomitant dissociation pathways.
Fig. 2: Synthesis and CoGEF simulation of mechanophore-containing polymer 1.
Fig. 3: Mechanical activation of polymer 1H leads to the scission of the central C–C bond.
Fig. 4: Deuterium labelling experiments reveal three dissociation pathways.
Fig. 5: Scissile bond polarization controls the relative importance of each dissociation pathway.
Fig. 6: The main dissociation pathways are probably the result of a post-TS bifurcation on the force-modified PES.

Similar content being viewed by others

Data availability

Crystallographic data for the compound 2H have been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC 1991781. The data that support the findings of this study are available within the paper and its Supplementary Information, or are available from the figshare data repository (https://doi.org/10.6084/m9.figshare.12156378.v1). Source data are provided with this paper.

References

  1. Beyer, M. K. & Clausen-Schaumann, H. Mechanochemistry: the mechanical activation of covalent bonds. Chem. Rev. 105, 2921–2948 (2005).

    Article  CAS  Google Scholar 

  2. Caruso, M. M. et al. Mechanically-induced chemical changes in polymeric materials. Chem. Rev. 109, 5755–5798 (2009).

    Article  CAS  Google Scholar 

  3. Izak-Nau, E., Campagna, D., Baumann, C. & Göstl, R. Polymer mechanochemistry-enabled pericyclic reactions. Polym. Chem. 11, 2274–2299 (2020).

    Article  CAS  Google Scholar 

  4. Klukovich, H. M. et al. Tension trapping of carbonyl ylides facilitated by a change in polymer backbone. J. Am. Chem. Soc. 134, 9577–9580 (2012).

    Article  CAS  Google Scholar 

  5. Shiraki, T., Diesendruck, C. E. & Moore, J. S. The mechanochemical production of phenyl cations through heterolytic bond scission. Faraday Discuss. 170, 385–394 (2014).

    Article  CAS  Google Scholar 

  6. Diesendruck, C. E. et al. Mechanically triggered heterolytic unzipping of a low-ceiling-temperature polymer. Nat. Chem. 6, 623–628 (2014).

    Article  CAS  Google Scholar 

  7. Peterson, G. I. & Boydston, A. J. Kinetic analysis of mechanochemical chain scission of linear poly(phthalaldehyde). Macromol. Rapid Comm 35, 1611–1614 (2014).

    Article  CAS  Google Scholar 

  8. Di Giannantonio, M. et al. Triggered metal ion release and oxidation: ferrocene as a mechanophore in polymers. Angew. Chem. Int. Ed. 57, 11445–11450 (2018).

    Article  Google Scholar 

  9. Sha, Y. et al. Quantitative and mechanistic mechanochemistry in ferrocene dissociation. ACS Macro Lett. 10, 1174–1179 (2018).

    Article  Google Scholar 

  10. Sha, Y. et al. Generalizing metallocene mechanochemistry to ruthenocene mechanophores. Chem. Sci. 10, 4959–4965 (2019).

    Article  CAS  Google Scholar 

  11. Hickenboth, C. R. et al. Biasing reaction pathways with mechanical force. Nature 446, 423–427 (2007).

    Article  CAS  Google Scholar 

  12. Wang, J. et al. Inducing and quantifying forbidden reactivity with single-molecule polymer mechanochemistry. Nat. Chem. 7, 323–327 (2015).

    Article  CAS  Google Scholar 

  13. Lenhardt, J. M. et al. Trapping a diradical transition state by mechanochemical polymer extension. Science 329, 1057–1060 (2010).

    Article  CAS  Google Scholar 

  14. Wang, J., Kouznetsova, T. B. & Craig, S. L. Reactivity and mechanism of a mechanically activated anti-Woodward–Hoffmann–DePuy reaction. J. Am. Chem. Soc. 137, 11554–11557 (2015).

    Article  CAS  Google Scholar 

  15. Garcia-Manyes, S., Liang, J., Szoszkiewicz, R., Kuo, T.-L. & Fernández, J. M. Force-activated reactivity switch in a bimolecular chemical reaction. Nat. Chem. 1, 236–242 (2009).

    Article  CAS  Google Scholar 

  16. Tian, Y., Kucharski, T. J., Yang, Q.-Z. & Boulatov, R. Model studies of force-dependent kinetics of multi-barrier reactions. Nat. Commun. 4, 2538 (2013).

    Article  Google Scholar 

  17. Pill, M. F., East, A. L. L., Marx, D., Beyer, M. K. & Clausen-Schaumann, H. Mechanical activation drastically accelerates amide bond hydrolysis, matching enzyme activity. Angew. Chem. Int. Ed. 58, 9787–9790 (2019).

    Article  CAS  Google Scholar 

  18. Hopkinson, M. N., Richter, C., Schedler, M. & Glorius, F. An overview of N-heterocyclic carbenes. Nature 510, 485–496 (2014).

    Article  CAS  Google Scholar 

  19. Sijbesma, R. P., Karthikeyan, S., Potisek, S. L. & Piermattei, A. Highly efficient mechanochemical scission of silver-carbene coordination polymers. J. Am. Chem. Soc. 130, 14968–14969 (2008).

    Article  Google Scholar 

  20. Piermattei, A., Karthikeyan, S. & Sijbesma, R. P. Activating catalysts with mechanical force. Nat. Chem. 1, 133–137 (2009).

    Article  CAS  Google Scholar 

  21. Michael, P. & Binder, W. H. A mechanochemically triggered ‘click’ catalyst. Angew. Chem. Int. Ed. 54, 13918–13922 (2015).

    Article  CAS  Google Scholar 

  22. Clough, J. M., Balan, A., van Daal, T. L. J. & Sijbesma, R. P. Probing force with mechanobase-induced chemiluminescence. Angew. Chem. Int. Ed. 55, 1445–1449 (2016).

    Article  CAS  Google Scholar 

  23. Flanigan, D. M., Romanov-Michailidis, F., White, N. A. & Rovis, T. Organocatalytic reactions enabled by N-heterocyclic carbenes. Chem. Rev. 115, 9307–9387 (2015).

    Article  CAS  Google Scholar 

  24. Naumann, S. & Dove, A. P. N-Heterocyclic carbenes as organocatalysts for polymerizations: trends and frontiers. Polym. Chem. 6, 3185–3200 (2015).

    Article  CAS  Google Scholar 

  25. Naumann, S. & Buchmeiser, M. R. Liberation of N-heterocyclic carbenes (NHCs) from thermally labile progenitors: protected NHCs as versatile tools in organo- and polymerization catalysis. Catal. Sci. Technol. 4, 2466–2479 (2014).

    Article  CAS  Google Scholar 

  26. Nyce, G. W., Csihony, S., Waymouth, R. M. & Hedrick, J. L. A general and versatile approach to thermally generated N‐heterocyclic carbenes. Chem. Eur. J. 10, 4073–4079 (2004).

    Article  CAS  Google Scholar 

  27. Beyer, M. The mechanical strength of a covalent bond calculated by density functional theory. J. Chem. Phys. 112, 7307–7312 (2000).

    Article  CAS  Google Scholar 

  28. Dubois, P., Coulembier, O. & Raquez, J.-M. Handbook of Ring-Opening Polymerization (John Wiley & Sons, 2009).

  29. Meldal, M. & Tornoe, C. W. Cu-catalyzed azide–alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008).

    Article  CAS  Google Scholar 

  30. Blum, A. P., Ritter, T. & Grubbs, R. H. Synthesis of N-heterocylic carbene-containing metal complexes from 2-(pentafluorophenyl)imidazolidines. Organometallics 26, 2122–2124 (2007).

    Article  CAS  Google Scholar 

  31. Hare, S. R. & Tantillo, D. J. Post-transition state bifurcations gain momentum—current state of the field. Pure Appl. Chem. 89, 679–698 (2017).

    Article  CAS  Google Scholar 

  32. Ess, D. H. et al. Bifurcations on potential energy surfaces of organic reactions. Angew. Chem. Int. Ed. 47, 7592–7601 (2008).

    Article  CAS  Google Scholar 

  33. Chen, Z. et al. The cascade unzipping of ladderane reveals dynamic effects in mechanochemistry. Nat. Chem. 12, 302–309 (2020).

    Article  CAS  Google Scholar 

  34. Wollenhaupt, M., Schran, C., Krupicka, M. & Marx, D. Force‐induced catastrophes on energy landscapes: mechanochemical manipulation of downhill and uphill bifurcations explains the ring‐opening selectivity of cyclopropanes. ChemPhysChem 19, 837–847 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the EPSRC for giving a studentship to R.N. and the Royal Society for giving a University Research Fellowship to G.D.B.

Author information

Authors and Affiliations

Authors

Contributions

G.D.B. conceived the project. R.N. and G.D.B. designed the experiments. R.N. carried out the experimental work. G.D.B performed the calculations. All the authors contributed to the analysis of the results and the writing of the manuscript.

Corresponding author

Correspondence to Guillaume De Bo.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, NMR spectra and computational details.

Supplementary Data

Crystallographic data for the compound 2H, CCDC 1991781.

Source data

Source Data Fig. 6

Source data of PES in Fig. 6b.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nixon, R., De Bo, G. Three concomitant C–C dissociation pathways during the mechanical activation of an N-heterocyclic carbene precursor. Nat. Chem. 12, 826–831 (2020). https://doi.org/10.1038/s41557-020-0509-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0509-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing