Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene


The incorporation of photoswitchable molecules into solid-state materials holds promise for the fabrication of responsive materials, the properties of which can be controlled on-demand. However, the possible applications of these materials are limited due to the restrictions imposed by the solid-state environment on the incorporated photoswitches, which render the photoisomerization inefficient. Here we present responsive porous switchable framework materials based on a bistable chiroptical overcrowded alkene incorporated in the backbone of a rigid aromatic framework. As a consequence of the high intrinsic porosity, the resulting framework readily responds to a light stimulus, as demonstrated by solid-state Raman and reflectance spectroscopies. Solid-state 13C NMR spectroscopy highlights an efficient and quantitative bulk photoisomerization of the incorporated light-responsive overcrowded olefins in the solid material. Taking advantage of the quantitative photoisomerization, the porosity of the framework and the consequent gas adsorption can be reversibly modulated in response to light and heat.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Photoisomerization of the overcrowded olefin-based bistable switch.
Fig. 2: Synthesis, structure, sorption and thermal properties of PSF materials.
Fig. 3: Photochemical isomerization of bistable switch 1-Br2 in solution.
Fig. 4: Photochemical isomerization studies in the solid state.
Fig. 5: Solid-state NMR observations of the reversible structural switching in PSF-2.
Fig. 6: Switching of the gas adsorption properties.

Data availability

The data associated with the reported findings are available in the manuscript or the Supplementary Information. Other related data are available from the corresponding author upon request.


  1. 1.

    Dietrich-Buchecker, C., Jimenez-Molero, M. C., Sartor, V. & Sauvage, J.-P. Rotaxanes and catenanes as prototypes of molecular machines and motors. Pure Appl. Chem. 75, 1383–1393 (2003).

    CAS  Google Scholar 

  2. 2.

    Balzani, V., Venturi, M. & Credi, A. Molecular Devices and Machines: A Journey into the Nano World. (Wiley, 2003).

  3. 3.

    Kay, E. R., Leigh, D. A. & Zerbetto, F. Synthetic molecular motors and mechanical machines. Angew. Chem. Int. Ed. 46, 72–191 (2007).

    CAS  Google Scholar 

  4. 4.

    Erbas-Cakmak, S., Leigh, D. A., McTernan, C. T. & Nussbaumer, A. L. Artificial molecular machines. Chem. Rev. 115, 10081–10206 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Browne, W. R. & Feringa, B. L. Making molecular machines work. Nat. Nanotechnol. 1, 25–35 (2006).

    CAS  PubMed  Google Scholar 

  6. 6.

    Kinbara, K. & Aida, T. Toward intelligent molecular machines: directed motions of biological and artificial molecules and assemblies. Chem. Rev. 105, 1377–1400 (2005).

    CAS  PubMed  Google Scholar 

  7. 7.

    Astumian, R. D., Kay, E. R., Leigh, D. A. & Zerbetto, F. Design principles for Brownian molecular machines: how to swim in molasses and walk in a hurricane. Proc. Natl Acad. Sci. USA 46, 10771–10776 (2006).

    Google Scholar 

  8. 8.

    Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F. & Grzybowski, B. A. Great expectations: can artificial molecular machines deliver on their promise? Chem. Soc. Rev. 41, 19–30 (2012).

    CAS  PubMed  Google Scholar 

  9. 9.

    Astumian, R. D. How molecular motors work–insights from the molecular machinist’s toolbox: the Nobel Prize in Chemistry 2016. Chem. Sci. 8, 840–845 (2017).

    CAS  PubMed  Google Scholar 

  10. 10.

    van Leeuwen, T., Lubbe, A. S., Štacko, P., Wezenberg, S. J. & Feringa, B. L. Dynamic control of function by light-driven molecular motors. Nat. Rev. Chem. 1, 0096 (2017).

    Google Scholar 

  11. 11.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    PubMed  Google Scholar 

  12. 12.

    Howarth, A. J. et al. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat. Rev. Mater. 1, 1–15 (2016).

    Google Scholar 

  13. 13.

    Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    CAS  Google Scholar 

  14. 14.

    Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    PubMed  Google Scholar 

  15. 15.

    Das, S., Heasman, P., Ben, T. & Qiu, S. Porous organic materials: strategic design and structure–function correlation. Chem. Rev. 117, 1515–1563 (2017).

    CAS  PubMed  Google Scholar 

  16. 16.

    Gould, S. L., Tranchemontagne, D., Yaghi, O. M. & Garcia-Garibay, M. A. The amphidynamic character of crystalline MOF-5: rotational dynamics in a free-volume environment. J. Am. Chem. Soc. 130, 3246–3247 (2008).

    CAS  PubMed  Google Scholar 

  17. 17.

    Vogelsberg, C. S. et al. Ultrafast rotation in an amphidynamic crystalline metal organic framework. Proc. Natl Acad. Sci. USA 114, 13613–13618 (2017).

    CAS  PubMed  Google Scholar 

  18. 18.

    Comotti, A., Bracco, S. & Sozzani, P. Molecular rotors built in porous materials. Acc. Chem. Res. 49, 1701–1710 (2016).

    CAS  PubMed  Google Scholar 

  19. 19.

    Bracco, S. et al. CO2 regulates molecular rotor dynamics in porous materials. Chem. Commun. 53, 7776–7779 (2017).

    CAS  Google Scholar 

  20. 20.

    Bracco, S. et al. Ultrafast molecular rotors and their CO2 tuning in MOFs with rod-like ligands. Chem. Eur. J. 23, 11210–11215 (2017).

    CAS  PubMed  Google Scholar 

  21. 21.

    Vukotic, V. N., Harris, K. J., Zhu, K., Schurko, R. W. & Loeb, S. J. Metal–organic frameworks with dynamic interlocked components. Nat. Chem. 4, 456–460 (2012).

    CAS  PubMed  Google Scholar 

  22. 22.

    Vukotic, V. N. et al. Mechanically interlocked linkers inside metal–organic frameworks: effect of ring size on rotational dynamics. J. Am. Chem. Soc. 137, 9643–9651 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Comotti, A., Bracco, S., Ben, T., Qiu, S. & Sozzani, P. Molecular rotors in porous organic frameworks. Angew. Chem. Int. Ed. 53, 1043–1047 (2014).

    CAS  Google Scholar 

  24. 24.

    Zhu, K., O’Keefe, C. A., Vukotic, V. N., Schurko, R. W. & Loeb, S. J. A molecular shuttle that operates inside a metal–organic framework. Nat. Chem. 7, 514–519 (2015).

    CAS  PubMed  Google Scholar 

  25. 25.

    Chen, Q. et al. A redox-active bistable molecular switch mounted inside a metal–organic framework. J. Am. Chem. Soc. 138, 14242–14245 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Danowski, W. et al. Unidirectional rotary motion in a metal–organic framework. Nat. Nanotechnol. 14, 488–494 (2019).

    CAS  PubMed  Google Scholar 

  27. 27.

    Coudert, F. X. Responsive metal–organic frameworks and framework materials: under pressure, taking the heat, in the spotlight, with friends. Chem. Mater. 27, 1905–1916 (2015).

    CAS  Google Scholar 

  28. 28.

    Castellanos, S., Kapteijn, F. & Gascon, J. Photoswitchable metal organic frameworks: turn on the lights and close the windows. CrystEngComm 18, 4006–4012 (2016).

    CAS  Google Scholar 

  29. 29.

    Baranconi, M. et al. Photoinduced reversible switching of porosity in molecular crystals based on star-shaped azobenzene tetramers. Nat. Chem. 7, 634–640 (2015).

    Google Scholar 

  30. 30.

    Wang, Z. et al. Series of photoswitchable azobenzene-containing metal–organic frameworks with variable adsorption switching effect. J. Phys. Chem. C 122, 19044–19050 (2018).

    CAS  Google Scholar 

  31. 31.

    Prasetya, N., Donose, B. C. & Ladewig, B. P. A new and highly robust light-responsive Azo-UiO-66 for highly selective and low energy post-combustion CO2 capture and its application in a mixed matrix membrane for CO2/N2 separation. J. Mater. Chem. A 6, 16390–16402 (2018).

    CAS  Google Scholar 

  32. 32.

    Castellanos, S. et al. Structural effects in visible-light-responsive metal–organic frameworks incorporating ortho-fluoroazobenzenes. Chem. Eur. J. 22, 746–752 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Brown, J. W. et al. Photophysical pore control in an azobenzene-containing metal–organic framework. Chem. Sci. 4, 2858–2864 (2013).

    CAS  Google Scholar 

  34. 34.

    Gong, L. L., Feng, X. F. & Luo, F. Novel azo–metal–organic framework showing a 10-connected bct net, breathing behavior, and unique photoswitching behavior toward CO2. Inorg. Chem. 54, 11587–11589 (2015).

    CAS  Google Scholar 

  35. 35.

    Heinke, L. et al. Photoswitching in two-component surface-mounted metal–organic frameworks: optically triggered release from a molecular container. ACS Nano 8, 1463–1467 (2014).

    CAS  PubMed  Google Scholar 

  36. 36.

    Lyndon, R. et al. Dynamic photo-switching in metal–organic frameworks as a route to low-energy carbon dioxide capture and release. Angew. Chem. Int. Ed. 52, 3695–3698 (2013).

    CAS  Google Scholar 

  37. 37.

    Wang, Z. et al. Tunable molecular separation by nanoporous membranes. Nat. Commun. 7, 13872 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Yu, X. et al. Cis-to-trans isomerization of azobenzene investigated by using thin films of metal–organic frameworks. Phys. Chem. Chem. Phys. 17, 22721–22725 (2015).

    CAS  PubMed  Google Scholar 

  39. 39.

    Park, J. et al. Reversible alteration of CO2 adsorption upon photochemical or thermal treatment in a metal–organic framework. J. Am. Chem. Soc. 134, 99–102 (2012).

    CAS  PubMed  Google Scholar 

  40. 40.

    Walton, I. M. et al. Photo-responsive MOFs: light-induced switching of porous single crystals containing a photochromic diarylethene. Chem. Commun. 49, 8012–8014 (2013).

    CAS  Google Scholar 

  41. 41.

    Patel, D. G. et al. Photoresponsive porous materials: the design and synthesis of photochromic diarylethene-based linkers and a metal–organic framework. Chem. Commun. 50, 2653–2656 (2014).

    CAS  Google Scholar 

  42. 42.

    Nikolayenko, V. I., Herbert, S. A. & Barbour, L. J. Reversible structural switching of a metal–organic framework by photoirradiation. Chem. Commun. 53, 11142–11145 (2017).

    CAS  Google Scholar 

  43. 43.

    Fan, C. B. et al. Significant enhancement of C2H2/C2H4 separation by a photochromic diarylethene unit: a temperature- and light-responsive separation switch. Angew. Chem. Int. Ed. 56, 7900–7906 (2017).

    CAS  Google Scholar 

  44. 44.

    Luo, F. et al. Photoswitching CO2 capture and release in a photochromic diarylethene metal–organic framework. Angew. Chem. Int. Ed. 53, 9298–9301 (2014).

    CAS  Google Scholar 

  45. 45.

    Zheng, Y. et al. Flexible interlocked porous frameworks allow quantitative photoisomerization in a crystalline solid. Nat. Commun. 8, 100 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. 46.

    Williams, D. E. et al. Energy transfer on demand: photoswitch-directed behavior of metal–porphyrin frameworks. J. Am. Chem. Soc. 136, 11886–11889 (2014).

    CAS  PubMed  Google Scholar 

  47. 47.

    Furlong, B. J. & Katz, M. J. Bistable dithienylethene-based metal–organic framework illustrating optically induced changes in chemical separations. J. Am. Chem. Soc. 139, 13280–13283 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Irie, M., Fukaminato, T., Matsuda, K. & Kobatake, S. Photochromism of diarylethene molecules and crystals: memories, switches, and actuators. Chem. Rev. 114, 12174–12277 (2014).

    CAS  PubMed  Google Scholar 

  49. 49.

    Kolokolov, D. I. et al. Flipping the switch: fast photoisomerization in a confined environment. J. Am. Chem. Soc. 140, 7611–7622 (2018).

    Google Scholar 

  50. 50.

    Dolgopolova, E. A. et al. Connecting wires: photoinduced electronic structure modulation in metal–organic frameworks. J. Am. Chem. Soc. 141, 5350–5358 (2019).

    CAS  PubMed  Google Scholar 

  51. 51.

    Kundu, P. K., Olsen, G. L., Kiss, V. & Klajn, R. Nanoporous frameworks exhibiting multiple stimuli responsiveness. Nat. Commun. 5, 3588 (2014).

    PubMed  Google Scholar 

  52. 52.

    Koumura, N., Zijistra, R. W. J., van Delden, R. A., Harada, N. & Feringa, B. L. Light-driven monodirectional molecular rotor. Nature 401, 152–155 (1999).

    CAS  PubMed  Google Scholar 

  53. 53.

    Koumura, N., Geertsema, E. M., Meetsma, A. & Feringa, B. L. Light-driven molecular rotor: unidirectional rotation controlled by a single stereogenic center. J. Am. Chem. Soc. 122, 12005–12006 (2000).

    CAS  Google Scholar 

  54. 54.

    Kistemaker, J. C. M., Pizzolato, S. F., van Leeuwen, T., Pijper, T. C. & Feringa, B. L. Spectroscopic and theoretical identification of two thermal isomerization pathways for bistable chiral overcrowded alkenes. Chem. Eur. J. 22, 13478–13487 (2016).

    CAS  PubMed  Google Scholar 

  55. 55.

    Iamsaard, S. et al. Conversion of light into macroscopic helical motion. Nat. Chem. 6, 229–235 (2014).

    CAS  PubMed  Google Scholar 

  56. 56.

    Orlova, T. et al. Revolving supramolecular chiral structures powered by light in nanomotor-doped liquid crystals. Nat. Nanotechnol. 13, 304–308 (2018).

    CAS  PubMed  Google Scholar 

  57. 57.

    Eelkema, R. et al. Nanomotor rotates microscale objects. Nature 440, 163 (2006).

    CAS  PubMed  Google Scholar 

  58. 58.

    Chen, J. et al. Artificial muscle-like function from hierarchical supramolecular assembly of photoresponsive molecular motors. Nat. Chem. 10, 132–138 (2018).

    CAS  PubMed  Google Scholar 

  59. 59.

    Li, Q. et al. Macroscopic contraction of a gel induced by the integrated motion of light-driven molecular motors. Nat. Nanotechnol. 10, 161–165 (2015).

    PubMed  Google Scholar 

  60. 60.

    Foy, J. T. et al. Dual-light control of nanomachines that integrate motor and modulator subunits. Nat. Nanotechnol. 12, 540–545 (2017).

    CAS  PubMed  Google Scholar 

  61. 61.

    Chen, K. Y. et al. Control of surface wettability using tripodal light-activated molecular motors. J. Am. Chem. Soc. 136, 3219–3224 (2014).

    CAS  PubMed  Google Scholar 

  62. 62.

    Ben, T. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457–9460 (2009).

    CAS  Google Scholar 

  63. 63.

    Wilson, C. et al. Swellable functional hypercrosslinked polymer networks for the uptake of chemical warfare agents. Polym. Chem. 8, 1914–1922 (2017).

    CAS  Google Scholar 

  64. 64.

    Bracco, S. et al. Porous 3D polymers for high pressure methane storage and carbon dioxide capture. J. Mater. Chem. A 5, 10328–10337 (2017).

    CAS  Google Scholar 

  65. 65.

    Huang, H., Sato, H. & Aida, T. Crystalline nanochannels with pendant azobenzene groups: steric or polar effects on gas adsorption and diffusion? J. Am. Chem. Soc. 139, 8784–8787 (2017).

    CAS  PubMed  Google Scholar 

  66. 66.

    Huang, R., Hill, M. R., Babarao, R. & Medhekar, N. V. CO2 adsorption in azobenzene functionalized stimuli responsive metal–organic frameworks. J. Phys. Chem. C 120, 16658–16667 (2016).

    CAS  Google Scholar 

  67. 67.

    Shimomura, K., Ikai, T., Kanoh, S., Yashima, E. & Maeda, K. Switchable enantioseparation based on macromolecular memory of a helical polyacetylene in the solid state. Nat. Chem. 6, 429–434 (2014).

    CAS  PubMed  Google Scholar 

Download references


This work was supported financially by the Netherlands Organization for Scientific Research (NWO-CW), the European Research Council (ERC, advanced grant no. 694345 to B.L.F.), the Ministry of Education, Culture and Science (Gravitation Program no. 024.001.035). We thank the University of Groningen for access to the Peregrine Computing Cluster. A.C. and P.S. acknowledge Ministero dell’Istruzione, dell’Università e della Ricerca (MIUR—Progetto Dipartimento di Eccellenza 2018-2022), PRIN 2015CTEBBA and PRIN 20173L7W8K (NEMO) for financial support. We thank C. X. Bezuidenhout for conformational analysis.

Author information




W.D., F.C., S.J.W., P.S. and B.L.F. conceived the project. W.D. synthesized the bistable switch 1-Br2 and F.C. synthesized the PSF materials. W.D. performed photoisomerization studies in solution, and Raman and DR UV-vis studies of the PSFs. J.P. performed gas adsorption isotherms and the evaluation of adsorption energy. S.B. and A.C. performed solid-state NMR studies on the synthesized materials. F.C. performed differential scanning calorimetry, thermogravimetric analysis and gas-uptake experiments. W.D. performed DFT studies. S.J.W., A.C. and B.L.F. guided the project. W.D., A.C., S.J.W., P.S. and B.L.F. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Sander J. Wezenberg or Angiolina Comotti or Ben L. Feringa.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional information on chemicals, structures and synthetic schemes, further NMR studies on isomerization in solution, additional solid-state NMR data on PSF-1 and PSF-2, additional N2 and CO2 adsorption isotherms of the PSFs and computational details.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Castiglioni, F., Danowski, W., Perego, J. et al. Modulation of porosity in a solid material enabled by bulk photoisomerization of an overcrowded alkene. Nat. Chem. 12, 595–602 (2020).

Download citation


Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing