Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Synthesis of a d1-titanium fluoride kagome lattice antiferromagnet

Abstract

The kagome lattice, composed of a planar array of corner-sharing triangles, is one of the most geometrically frustrated lattices. The realization of a spin S = 1/2 kagome lattice antiferromagnet is of particular interest because it may host an exotic form of matter, a quantum spin liquid state, which shows long-range entanglement and no magnetic ordering down to 0 K. A few S = 1/2 kagome lattice antiferromagnets exist, typically based on Cu2+, d9 compounds, though they feature structural imperfections. Herein, we present the synthesis of (CH3NH3)2NaTi3F12, which comprises an S = 1/2 kagome layer that exhibits only one crystallographically distinct Ti3+, d1 site, and one type of bridging fluoride. A static positional disorder is proposed for the interlayer CH3NH3+. No structural phase transitions were observed from 1.8 K to 523 K. Despite its spin-freezing behaviour, other features—including its negative Curie–Weiss temperature and a lack of long-range ordering—imply that this compound is a highly frustrated magnet with unusual magnetic phase behaviours.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Crystal structure of 1-Ti.
Fig. 2: Low-temperature structural and thermodynamic properties of 1-Ti.
Fig. 3: View of the different titanium sites induced by the static positional disorder of MA+ viewed parallel to the c-axis.
Fig. 4: Physical properties of 1-Ti.

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1950701 (1-Ti, 100 K) and 1950702 (1-Ti, 298 K). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All data generated or analysed during this study are included in this published article and its Supplementary Information files.

References

  1. 1.

    Ramirez, A. Strongly geometrically frustrated magnets. Annu. Rev. Mater. Sci. 24, 453–480 (1994).

    CAS  Google Scholar 

  2. 2.

    Atwood, J. L. Kagome lattice: a molecular toolkit for magnetism. Nat. Mater. 1, 91–92 (2002).

    CAS  PubMed  Google Scholar 

  3. 3.

    Grohol, D., Nocera, D. G. & Papoutsakis, D. Magnetism of pure iron jarosites. Phys. Rev. B Condens. Matter 67, 064401 (2003).

    Google Scholar 

  4. 4.

    Freedman, D. E. et al. Frustrated magnetism in the S = 1 kagome lattice BaNi3(OH)2(VO4)2. Chem. Commun. 48, 64–66 (2012).

    CAS  Google Scholar 

  5. 5.

    Paul, G., Choudhury, A., Sampathkumaran, E. V. & Rao, C. N. R. Organically templated mixed‐valent iron sulfates possessing kagomé and other types of layered networks. Angew. Chem. Int. Ed. 41, 4297–4300 (2002).

    CAS  Google Scholar 

  6. 6.

    Grohol, D. et al. Spin chirality on a two-dimensional frustrated lattice. Nat. Mater. 4, 323–328 (2005).

    CAS  PubMed  Google Scholar 

  7. 7.

    Hara, S., Sato, H. & Narumi, Y. Exotic magnetism of novel S = 1 kagome lattice antiferromagnet KV3Ge2O9. J. Phys. Soc. Jpn. 81, 073707 (2012).

    Google Scholar 

  8. 8.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    CAS  PubMed  Google Scholar 

  9. 9.

    Yan, S., Huse, D. A. & White, S. R. Spin-liquid ground state of the S = 1/2 kagome Heisenberg antiferromagnet. Science 332, 1173–1176 (2011).

    CAS  PubMed  Google Scholar 

  10. 10.

    Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    CAS  PubMed  Google Scholar 

  11. 11.

    Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Spin-liquid state in an organic spin-1/2 system on a triangular lattice, EtMe3Sb[Pd(dmit)2]2. J. Phys. Condens. Matter 19, 145247 (2007).

    Google Scholar 

  12. 12.

    Okamoto, Y., Nohara, M., Aruga-Katori, H. & Takagi, H. Spin-liquid state in the S = 1/2 hyperkagome antiferromagnet Na4Ir3O8. Phys. Rev. Lett. 99, 137207 (2007).

    PubMed  Google Scholar 

  13. 13.

    Yamashita, S. et al. Thermodynamic properties of a spin-1/2 spin-liquid state in a κ-type organic salt. Nat. Phys. 4, 459–462 (2008).

    CAS  Google Scholar 

  14. 14.

    Okamoto, Y., Yoshida, H. & Hiroi, Z. Vesignieite BaCu3V2O8(OH)2 as a candidate spin-1/2 kagome antiferromagnet. J. Phys. Soc. Jpn. 78, 033701–033701 (2009).

    Google Scholar 

  15. 15.

    Pasco, C. et al. Single-crystal growth of Cu4(OH)6BrF and universal behavior in quantum spin liquid candidates synthetic barlowite and herbertsmithite. Phys. Rev. Mater. 2, 044406 (2018).

    CAS  Google Scholar 

  16. 16.

    Han, T.-H. et al. Fractionalized excitations in the spin-liquid state of a kagome-lattice antiferromagnet. Nature 492, 406–410 (2012).

    CAS  PubMed  Google Scholar 

  17. 17.

    Shores, M. P., Nytko, E. A., Bartlett, B. M. & Nocera, D. G. A structurally perfect S = 1/2 kagome antiferromagnet. J. Am. Chem. Soc. 127, 13462–13463 (2005).

    CAS  PubMed  Google Scholar 

  18. 18.

    Fu, M., Imai, T., Han, T.-H. & Lee, Y. S. Evidence for a gapped spin-liquid ground state in a kagome Heisenberg antiferromagnet. Science 350, 655–658 (2015).

    CAS  PubMed  Google Scholar 

  19. 19.

    Freedman, D. E. et al. Site specific X-ray anomalous dispersion of the geometrically frustrated kagomé magnet, herbertsmithite, ZnCu3(OH)6Cl2. J. Am. Chem. Soc. 132, 16185–16190 (2010).

    CAS  PubMed  Google Scholar 

  20. 20.

    Mendels, P. & Bert, F. Quantum kagome antiferromagnet ZnCu3(OH)6Cl2. J. Phys. Soc. Jpn. 79, 011001 (2010).

    Google Scholar 

  21. 21.

    Aidoudi, F. H. et al. An ionothermally prepared S = 1/2 vanadium oxyfluoride kagome lattice. Nat. Chem. 3, 801–806 (2011).

    CAS  PubMed  Google Scholar 

  22. 22.

    Clark, L. et al. Gapless spin liquid ground state in the S = 1/2 vanadium oxyfluoride kagome antiferromagnet [NH4]2[C7H14N][V7O6F18]. Phys. Rev. Lett. 110, 207208 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Nocera, D. G., Bartlett, B. M., Grohol, D., Papoutsakis, D. & Shores, M. P. Spin frustration in 2D kagome lattices: a problem for inorganic synthetic chemistry. Chem. Eur. J. 10, 3850–3859 (2004).

    PubMed  Google Scholar 

  24. 24.

    Bendix, J., Brorson, M. & Schaffer, C. E. Accurate empirical spin-orbit coupling parameters ζnd for gaseous ndq transition metal ions. The parametrical multiplet term model. Inorg. Chem. 32, 2838–2849 (1993).

    CAS  Google Scholar 

  25. 25.

    Jeschke, H. O., Nakano, H. & Sakai, T. From kagome strip to kagome lattice: realizations of frustrated S = 1/2 antiferromagnets in Ti(iii) fluorides. Phys. Rev. B Condens. Matter 99, 140410 (2019).

    CAS  Google Scholar 

  26. 26.

    Nilsen, G. et al. One-dimensional quantum magnetism in the anhydrous alum KTi(SO4)2. New J. Phys. 17, 113035 (2015).

    Google Scholar 

  27. 27.

    Sabatier, R. et al. Structural and magnetic studies of cesium fluorotitanate (CsTiF4). Mater. Res. Bull. 17, 369–377 (1982).

    CAS  Google Scholar 

  28. 28.

    Dadachov, M. & Eriksson, L. Diammonium titanium pentafluoride, (NH4)2TiF5, containing Ti3+. Acta Crystallogr. C 55, 1739–1741 (1999).

    Google Scholar 

  29. 29.

    Jo, V., Lee, D. W., Koo, H.-J. & Ok, K. M. A2TiF5·nH2O (A = K, Rb, or Cs; n = 0 or 1): synthesis, structure, characterization, and calculations of three new uni-dimensional titanium fluorides. J. Solid State Chem. 184, 741–746 (2011).

    CAS  Google Scholar 

  30. 30.

    Goto, M. et al. Various disordered ground states and 1/3 magnetization-plateau-like behavior in the S = 1/2 Ti3+ kagome lattice antiferromagnets Rb2NaTi3F12, Cs2NaTi3F12, and Cs2KTi3F12. Phys. Rev. B Condens. Matter 94, 104432 (2016).

    Google Scholar 

  31. 31.

    Armstrong, J. A., Williams, E. R. & Weller, M. T. Fluoride-rich, hydrofluorothermal routes to functional transition metal (Mn, Fe, Co, Cu) fluorophosphates. J. Am. Chem. Soc. 133, 8252–8263 (2011).

    CAS  PubMed  Google Scholar 

  32. 32.

    Brese, N. & O’Keeffe, M. Bond-valence parameters for solids. Acta Crystallogr. B 47, 192–197 (1991).

    Google Scholar 

  33. 33.

    Brown, I. A determination of the oxidation states and internal stresses in Ba2YCu3Ox, x = 6–7 using bond valences. J. Solid State Chem. 82, 122–131 (1989).

    CAS  Google Scholar 

  34. 34.

    Reinen, D., Atanasov, M., Köhler, P. & Babel, D. Jahn–Teller coupling and the influence of strain in Tg and Eg ground and excited states—a ligand field and DFT study on halide MIIIX6 model complexes [M = TiIII–CuIII; X = F, Cl]. Coord. Chem. Rev. 254, 2703–2754 (2010).

    CAS  Google Scholar 

  35. 35.

    Rao, C. N. R. et al. Synthesis, structure, and the unusual magnetic properties of an amine-templated iron (ii) sulfate possessing the kagome lattice. Chem. Mater. 16, 1441–1446 (2004).

    CAS  Google Scholar 

  36. 36.

    Reisinger, S. A., Tang, C. C., Thompson, S. P., Morrison, F. D. & Lightfoot, P. Structural phase transition in the S = 1/2 kagome system Cs2ZrCu3F12 and a comparison to the valence-bond-solid phase in Rb2SnCu3F12. Chem. Mater. 23, 4234–4240 (2011).

    CAS  Google Scholar 

  37. 37.

    Ono, T. et al. Magnetic susceptibilities in a family of S = 1/2 kagome antiferromagnets. Phys. Rev. B Condens. Matter 79, 174407 (2009).

    Google Scholar 

  38. 38.

    Kelly, Z. A., Tran, T. T. & McQueen, T. M. Nonpolar-to-polar trimerization transitions in the S = 1 kagome magnet Na2Ti3Cl8. Inorg. Chem. 58, 11941–11948 (2019).

    CAS  PubMed  Google Scholar 

  39. 39.

    Besara, T. et al. Mechanism of the order–disorder phase transition, and glassy behavior in the metal–organic framework [(CH3)2NH2]Zn(HCOO)3. Proc. Natl Acad. Sci. USA 108, 6828–6832 (2011).

    Google Scholar 

  40. 40.

    Fabini, D. H. et al. Dielectric and thermodynamic signatures of low-temperature glassy dynamics in the hybrid perovskites CH3NH3PbI3 and HC(NH2)2PbI3. J. Phys. Chem. Lett. 7, 376–381 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Fabini, D. H. et al. Universal dynamics of molecular reorientation in hybrid lead iodide perovskites. J. Am. Chem. Soc. 139, 16875–16884 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Scheie, A. LongHCPulse: long-pulse heat capacity on a quantum design PPMS. J. Low Temp. Phys. 193, 60–73 (2018).

    CAS  Google Scholar 

  43. 43.

    Bert, F. et al. Low temperature magnetization of the S = 1/2 kagome antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. B Condens. Matter 76, 132411 (2007).

    Google Scholar 

  44. 44.

    Sinha, M. et al. Introduction of spin centers in single crystals of Ba2CaWO6−δ. Phys. Rev. Mater. 3, 125002 (2019).

    CAS  Google Scholar 

  45. 45.

    Helton, J. et al. Spin dynamics of the spin-1/2 kagome lattice antiferromagnet ZnCu3(OH)6Cl2. Phys. Rev. Lett. 98, 107204 (2007).

    CAS  PubMed  Google Scholar 

  46. 46.

    Mydosh, J. A. Spin Glasses: an Experimental Introduction (CRC Press, 2014).

  47. 47.

    Ma, Z. et al. Spin-glass ground state in a triangular-lattice compound YbZnGaO4. Phys. Rev. Lett. 120, 087201 (2018).

    CAS  PubMed  Google Scholar 

  48. 48.

    Balz, C. et al. Physical realization of a quantum spin liquid based on a complex frustration mechanism. Nat. Phys. 12, 942–949 (2016).

    Google Scholar 

  49. 49.

    Liu, W. et al. Rare-earth chalcogenides: a large family of triangular lattice spin liquid candidates. Chin. Phys. Lett. 35, 117501 (2018).

    CAS  Google Scholar 

  50. 50.

    Li, Y. et al. Rearrangement of uncorrelated valence bonds evidenced by low-energy spin excitations in YbMgGaO4. Phys. Rev. Lett. 122, 137201 (2019).

    CAS  PubMed  Google Scholar 

  51. 51.

    Bordelon, M. M. et al. Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2. Nat. Phys. 15, 1058–1064 (2019).

    CAS  Google Scholar 

  52. 52.

    Kimchi, I., Nahum, A. & Senthil, T. Valence bonds in random quantum magnets: theory and application to YbMgGaO4. Phys. Rev. X 8, 031028 (2018).

    CAS  Google Scholar 

  53. 53.

    Feng, Z. et al. Gapped spin-1/2 spinon excitations in a new kagome quantum spin liquid compound Cu3Zn(OH)6FBr. Chin. Phys. Lett. 34, 077502 (2017).

    Google Scholar 

  54. 54.

    Bertolini, J. C. Hydrofluoric acid: a review of toxicity. J. Emerg. Med. 10, 163–168 (1992).

    CAS  PubMed  Google Scholar 

  55. 55.

    Peters, D. & Miethchen, R. Symptoms and treatment of hydrogen fluoride injuries. J. Fluor. Chem. 79, 161–165 (1996).

    CAS  Google Scholar 

  56. 56.

    CrysAlisPro Software system v.1.171.39.20a (Rigaku Corporation, 2015).

  57. 57.

    Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Crystallogr. C 71, 3–8 (2015).

    Google Scholar 

  58. 58.

    Sheldrick, G. M. SHELXT–integrated space-group and crystal-structure determination. Acta Crystallorgr. A Found. Adv. 71, 3–8 (2015).

    Google Scholar 

  59. 59.

    Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. & Puschmann, H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 42, 339–341 (2009).

    CAS  Google Scholar 

  60. 60.

    Schnelle, W., Engelhardt, J. & Gmelin, E. Specific heat capacity of Apiezon N high vacuum grease and of Duran borosilicate glass. Cryogenics 39, 271–275 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

Studies were supported by the Beckman Foundation as part of a Beckman Young Investigator Award to H.S.L. Single-crystal diffraction experiments were performed at the Georgia Institute of Technology SCXRD facility, established with funding from the Georgia Institute of Technology. We thank M. Mourigal for providing access to a PPMS. This work was performed in part at the Georgia Tech Institute for Electronics and Nanotechnology, a member of the National Nanotechnology Coordinated Infrastructure (NNCI), which is supported by the National Science Foundation (grant ECCS-1542174). The low-temperature PXRD experiment was conducted at the Center for Nanophase Materials Sciences, which is a US Department of Energy (DOE) Office of Science User Facility. A portion of this research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. We thank Q. Zhang and J. K. Keum for their help with neutron powder diffraction and low-temperature PXRD studies, respectively.

Author information

Affiliations

Authors

Contributions

N.J. and H.S.L. conceived and designed the experiments. N.J. performed all the experiments except for the thermogravimetric analysis, DSC and NMR, which were performed by A.R. The neutron diffraction experiments were analysed by A.R. The crystallography was performed by N.J. and J.B.; N.J. and H.S.L. wrote the initial draft of the paper, and all authors contributed to the final version.

Corresponding author

Correspondence to Henry S. La Pierre.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–29, experimental methods and Tables 1–3.

Supplementary Data 1

Crystallographic information file of compound 1-Ti at 298 K.

Supplementary Data 2

Crystallographic information file of compound 1-Ti at 100 K.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, N., Ramanathan, A., Bacsa, J. et al. Synthesis of a d1-titanium fluoride kagome lattice antiferromagnet. Nat. Chem. 12, 691–696 (2020). https://doi.org/10.1038/s41557-020-0490-8

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing