Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Synthesis and characterization of crystalline niobium and tantalum carbonyl complexes at room temperature

Abstract

A variety of homoleptic transition metal carbonyl complexes are known as bulk compounds for group 7–12 metals. These metals typically feature a maximum of 6 CO ligands to form complexes with 18 valence electrons. In contrast, group 3–5 metals, with fewer valence electrons, have been shown to form highly coordinated heptacarbonyl and octacarbonyl complexes—although they were only identified by gas-phase mass spectrometry and/or matrix isolation spectroscopy work. Now we have prepared heptacarbonyl cations of niobium and tantalum as crystalline salts that are stable at room temperature. The [M(CO)7]+ (M = Nb or Ta) complexes were formed by the oxidation of [M(CO)6] with 2Ag+[Al(ORF)4] (RF, C(CF3)3) under a CO atmosphere; their experimental characterization was supported by density functional theory calculations. Other unusual carbonyl compounds were also synthesized: two isostructural salts that contained the 84-valence-electron cluster cation [Ag6{Nb(CO)6}4]2+, the piano-stool complexes [(1,2-F2C6H4)M(CO)4]+ and two polymorphs of neutral Ta2(CO)12 with a long, unsupported Ta–Ta bond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Overview to the syntheses of 1, 2, 3, 4 and 5.
Fig. 2: Single crystal X-ray structure determinations (scXRD) of 1, 2, 3, 4 and 5.
Fig. 3: Vibrational spectroscopy analysis of 2.
Fig. 4: Synthesis and molecular structure of 6.

Similar content being viewed by others

Data availability

Atomic coordinates and structure factors for the crystal structure of 16 are deposited at the Cambridge Crystallographic Data Centre (CCDC) under the accession codes 1909275 (1), 1909276 (2), 1909277 (3a), 1909279 (3b), 1909278 (4), 1909449 (5), 1909450 (6a) and 1909274 (6b); copies of the data can be obtained from www.ccdc.cam.ac.uk/data_request/cif. All the other data generated or analysed during this study are included in this published article (and its Supplementary Information files), and are available from the corresponding authors on reasonable request.

References

  1. Mond, L., Langer, C. & Quincke, F. L.—Action of carbon monoxide on nickel. J. Chem. Soc. Trans. 57, 749–753 (1890).

    Article  CAS  Google Scholar 

  2. Dyson, P. J. Catalysis by low oxidation state transition metal (carbonyl) clusters. Coord. Chem. Rev. 248, 2443–2458 (2004).

    Article  CAS  Google Scholar 

  3. Kondo, T., Suzuki, N., Okada, T. & Mitsudo, T. First ruthenium-catalyzed intramolecular Pauson−Khand reaction. J. Am. Chem. Soc. 119, 6187–6188 (1997).

    Article  CAS  Google Scholar 

  4. Motterlini, R. et al. Carbon monoxide-releasing molecules. Circ. Res. 90, e17–e24 (2002).

    Article  CAS  PubMed  Google Scholar 

  5. Romão, C. C., Blättler, W. A., Seixas, J. D. & Bernardes, G. J. L. Developing drug molecules for therapy with carbon monoxide. Chem. Soc. Rev. 41, 3571–3583 (2012).

    Article  PubMed  CAS  Google Scholar 

  6. Motterlini, R. & Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. 9, 728–743 (2010).

    CAS  Google Scholar 

  7. Tsumori, N., Xu, Q., Souma, Y. & Mori, H. Carbonylation of alcohols over Nafion-H, a solid perfluoroalkanesulfonic acid resin catalyst. J. Mol. Cat. A 179, 271–277 (2002).

    Article  CAS  Google Scholar 

  8. Braunstein, P. & Naud, F. Hemilability of hybrid ligands and the coordination chemistry of oxazoline-based systems. Angew. Chem. Int. Ed. 40, 680–699 (2001).

    Article  CAS  Google Scholar 

  9. Weber, L. et al. Organometallic chemistry of homoleptic carbonylmetal cations. 1. Stereospecific tetramerization of 2-propynol and polymerization of arylacetylenes by means of [Pt(CO)4][Sb2F11]2. Organometallics 18, 2497–2504 (1999).

    Article  CAS  Google Scholar 

  10. Xu, Q. Metal carbonyl cations. Generation, characterization and catalytic application. Coord. Chem. Rev. 231, 83–108 (2002).

    Article  CAS  Google Scholar 

  11. Semmelhack, M. F. & Clark, G. Meta-substituted aromatics by carbanion attack on π-anisole and π-toluenechromium tricarbonyl. J. Am. Chem. Soc. 99, 1675–1676 (1977).

    Article  CAS  Google Scholar 

  12. Semmelhack, M. F., Bisaha, J. & Czarny, M. Metalation of arenechromium tricarbonyl complexes and electrophilic trapping of the complexed phenyllithium intermediate. J. Am. Chem. Soc. 101, 768–770 (1979).

    Article  CAS  Google Scholar 

  13. Rose-Munch, F., Gagliardini, V., Renard, C. & Rose, E. (η6-Arene)tricarbonylchromium and (η5-cyclohexadienyl) tricarbonylmanganese complexes. Indirect nucleophilic substitutions. Coord. Chem. Rev. 178–180, 249–268 (1998).

  14. Wu, X. et al. Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science 361, 912–916 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. Landis, C. R., Hughes, R. P. & Weinhold, F. Comment on “Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals”. Science 365, eaay2355 (2019).

    Article  CAS  PubMed  Google Scholar 

  16. Zhao, L., Pan, S., Zhou, M. & Frenking, G. Response to Comment on “Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals”. Science 365, eaay5021 (2019).

    Article  CAS  PubMed  Google Scholar 

  17. Bernhardt, E. et al. D 3d ground-state structure of V(CO)6: a combined matrix isolation and ab initio study of the Jahn−Teller effect. J. Phys. Chem. A 107, 859–868 (2003).

    Article  CAS  Google Scholar 

  18. Willner, H. & Aubke, F. σ-Bonded metal carbonyl cations and their derivatives. Syntheses and structural, spectroscopic, and bonding principles. Organometallics 22, 3612–3633 (2003).

    Article  CAS  Google Scholar 

  19. Frenking, G. Understanding the nature of the bonding in transition metal complexes: from Dewar’s molecular orbital model to an energy partitioning analysis of the metal–ligand bond. J. Organomet. Chem. 635, 9–23 (2001).

    Article  CAS  Google Scholar 

  20. Frenking, G., Loschen, C., Krapp, A., Fau, S. & Strauss, S. H. Electronic structure of CO—an exercise in modern chemical bonding theory. J. Comput. Chem. 28, 117–126 (2007).

    Article  CAS  PubMed  Google Scholar 

  21. Lupinetti, A. J., Frenking, G. & Strauss, S. H. Nonclassical metal carbonyls: appropriate definitions with a theoretical justification. Angew. Chem. Int. Ed. 37, 2113–2116 (1998).

    Article  CAS  Google Scholar 

  22. Willner, H. & Aubke, F. Homoleptic metal carbonyl cations of the electron-rich metals. Their generation in superacid media together with their spectroscopic and structural characterization. Angew. Chem. Int. Ed. Engl. 36, 2402–2425 (1997).

    Article  CAS  Google Scholar 

  23. Hurlburt, P. K. et al. Nonclassical metal carbonyls: [Ag(CO)]+ and [Ag(CO)2]+. J. Am. Chem. Soc. 116, 10003–10014 (1994).

    Article  CAS  Google Scholar 

  24. Lupinetti, A. J., Havighurst, M. D., Miller, S. M., Anderson, O. P. & Strauss, S. H. Facile Conversion of [(η6-C6H6)Rh(CO)2][1-Et-CB11F11] into the nonclassical rhodium(i) carbonyl [Rh(CO)4][1-Et-CB11F11]. J. Am. Chem. Soc. 121, 11920–11921 (2019).

    Article  CAS  Google Scholar 

  25. Bistoni, G. et al. How π back-donation quantitatively controls the CO stretching response in classical and non-classical metal carbonyl complexes. Chem. Sci. 7, 1174–1184 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Ricks, A. M., Reed, Z. D. & Duncan, M. A. Seven-coordinate homoleptic metal carbonyls in the gas phase. J. Am. Chem. Soc. 131, 9176–9177 (2009).

    Article  CAS  PubMed  Google Scholar 

  27. Brathwaite, A. D., Maner, J. A. & Duncan, M. A. Testing the limits of the 18-electron rule: the gas-phase carbonyls of Sc+ and Y+. The gas-phase carbonyls of Sc+ and Y+. Inorg. Chem. 53, 1166–1169 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. Jin, J. et al. Octacarbonyl anion complexes of group three transition metals [TM(CO)8] (TM = Sc, Y, La) and the 18-electron rule. Angew. Chem. Int. Ed. 57, 6236–6241 (2018).

    Article  CAS  Google Scholar 

  29. Bohnenberger, J. et al. Stable salts of the hexacarbonyl chromium(i) cation and its pentacarbonyl-nitrosyl chromium(i) analogue. Nat. Commun. 10, 624 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Xu, Q. et al. Hexacarbonyldiplatinum(i). Synthesis, spectroscopy, and density functional calculation of the first homoleptic, dinuclear platinum(i) carbonyl cation, [{Pt(CO)3}2]2+, formed in concentrated sulfuric acid. J. Am. Chem. Soc. 122, 6862–6870 (2000).

    Article  CAS  Google Scholar 

  31. Malinowski, P. J. & Krossing, I. Ag[Fe(CO)5]2+: a bare silver complex with Fe(CO)5 as a ligand. Angew. Chem. Int. Ed. 53, 13460–13462 (2014).

    Article  CAS  Google Scholar 

  32. Krossing, I. & Raabe, I. Noncoordinating anions—fact or fiction? A survey of likely candidates. Angew. Chem. Int. Ed. 43, 2066–2090 (2004).

    Article  CAS  Google Scholar 

  33. Riddlestone, I. M., Kraft, A., Schaefer, J. & Krossing, I. Taming the cationic beast. Novel developments in the synthesis and application of weakly coordinating anions. Angew. Chem. Int. Ed. 57, 13982–14024 (2018).

    Article  CAS  Google Scholar 

  34. Ivanova, S. M. et al. Mono-, di-, tri-, and tetracarbonyls of copper(i), including the structures of Cu(CO)2(1-Bn-CB11F11) and [Cu(CO)4][1-Et-CB11F11]. Inorg. Chem. 38, 3756–3757 (1999).

    Article  CAS  Google Scholar 

  35. Bernhardt, E., Finze, M., Willner, H., Lehmann, C. W. & Aubke, F. Co(CO)5(CF3)3BF: a stable salt of a homoleptic trigonal–bipyramidal metal–carbonyl cation. Angew. Chem. Int. Ed. 42, 2077–2079 (2003).

  36. Rodgers, M. T. & Armentrout, P. B. Cationic noncovalent interactions. Energetics and periodic trends. Chem. Rev. 116, 5642–5687 (2016).

    Article  CAS  PubMed  Google Scholar 

  37. Duncan, M. A. Infrared spectroscopy to probe structure and dynamics in metal ion–molecule complexes. Int. Rev. Phys. Chem. 22, 407–435 (2003).

    Article  CAS  Google Scholar 

  38. Meier, S. C., Himmel, D. & Krossing, I. How does the environment influence a given cation? A systematic investigation of Co(CO)5 + in gas phase, solution, and solid state. Chem. Eur. J. 24, 19348–19360 (2018).

    Article  CAS  PubMed  Google Scholar 

  39. Krossing, I. The facile preparation of weakly coordinating anions: structure and characterisation of silverpolyfluoroalkoxyaluminates AgAl(ORF)4, calculation of the alkoxide ion affinity. Chem. Eur. J. 7, 490–502 (2001).

    Article  CAS  PubMed  Google Scholar 

  40. Dewey, C. G., Ellis, J. E., Fjare, K. L., Pfahl, K. M. & Warnock, G. F. P. A facile atmospheric pressure synthesis of the hexacarbonylmetalate ions, M(CO)6 , of niobium and tantalum. Organometallics 2, 388–391 (1983).

    Article  CAS  Google Scholar 

  41. Herrmann, W. A. 100 years of metal carbonyls. A serendipitous chemical discovery of major scientific and industrial impact. J. Organomet. Chem. 383, 21–44 (1990).

    Article  Google Scholar 

  42. Calderazzo, F., Castellani, M., Pampaloni, G. & Zanazzi, P. F. New carbonyl derivatives of niobium(i) and tantalum(i). J. Chem. Soc. Dalton Trans. 1985, 1989–1995 (1985).

    Article  Google Scholar 

  43. Yan, J. et al. Asymmetric synthesis of chiral bimetallic [Ag28Cu12(SR)24]4– nanoclusters via ion pairing. J. Am. Chem. Soc. 138, 12751–12754 (2016).

    Article  CAS  PubMed  Google Scholar 

  44. Hailmann, M. et al. Unprecedented efficient structure controlled phosphorescence of silver(i) clusters stabilized by carba-closo-dodecaboranylethynyl ligands. Angew. Chem. Int. Ed. Engl. 55, 10507–10511 (2016).

    Article  CAS  PubMed  Google Scholar 

  45. Jin, S. et al. Crystal structure and optical properties of the [Ag62S12(SBut)32]2+ nanocluster with a complete face-centered cubic kernel. J. Am. Chem. Soc. 136, 15559–15565 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Reiß, P., Weigend, F., Ahlrichs, R. & Fenske, D. [{Ag(tBuNH2)2}4][{Ag(tBuNH2)(tBuN=CHCH3)}2][Ag12(CF3CO2)14]: a compound with an Ag128 + cluster core. Angew. Chem. Int. Ed. 39, 3925–3929 (2000).

    Article  Google Scholar 

  47. Calderazzo, F., Pampaloni, G., Englert, U. & Strähle, J. Electron-transfer processes with substituted group 5 metal carbonyls. Synthesis, crystal and molecular structure of Ag3M3(CO)12(Me2PCH2CH2PMe2)3, M = Nb, Ta, the first structurally characterized carbonyl derivatives of niobium(0) and tantalum(0). J. Organomet. Chem. 383, 45–57 (1990).

    Article  CAS  Google Scholar 

  48. Tang, L. et al. The remarkable Nb2(CO)12 with seven-coordinate niobium: decarbonylation to Nb2(CO)11 and Nb2(CO)10. J. Chem. Theory Comput. 7, 2112–2125 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Sietzen, M., Wadepohl, H. & Ballmann, J. Synthesis and reactivity of cyclometalated triamidophosphine complexes of niobium and tantalum. Inorg. Chem. 54, 4094–4103 (2015).

    Article  CAS  PubMed  Google Scholar 

  50. Belmonte, P. A., Schrock, R. R. & Day, C. S. Binuclear tantalum hydride complexes. J. Am. Chem. Soc. 104, 3082–3089 (1982).

    Article  CAS  Google Scholar 

  51. Miller, R. L. et al. Syntheses, carbonylations, and dihydrogen exchange studies of monomeric and dimeric silox (tert-Bu3SiO) hydrides of tantalum: structure of [(silox)2TaH2]2. J. Am. Chem. Soc. 115, 5570–5588 (1993).

    Article  CAS  Google Scholar 

  52. Scoles, L., Ruppa, K. B. P. & Gambarotta, S. Preparation of the first ditantalum(iii) complex containing a Ta−Ta bond without bridging ligands. J. Am. Chem. Soc. 118, 2529–2530 (1996).

    Article  CAS  Google Scholar 

  53. Pyykkö, P. & Atsumi, M. Molecular double-bond covalent radii for elements Li–E112. Chem. Eur. J. 15, 12770–12779 (2009).

    Article  PubMed  CAS  Google Scholar 

  54. Batsanov, S. S. Van der Waals radii of elements. Inorg. Mat. 37, 871–885 (2001).

    Article  CAS  Google Scholar 

  55. Assefa, M. K., Devera, J. L., Brathwaite, A. D., Mosley, J. D. & Duncan, M. A. Vibrational scaling factors for transition metal carbonyls. Chem. Phys. Lett. 640, 175–179 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

I.K. supervised the project. W.U. designed and performed the experiments and all the characterizations. M.S. and D.H. carried out the general quantum chemical calculations. W.U. and D.K. performed the single-crystal determination and refinement. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to I. Krossing.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Methods, syntheses of all compounds, vibrational, NMR and UV–vis analysis, crystallographic data and computational details.

Crystallographic Data

CIF for compound 1; CCDC reference: 1909275.

Crystallographic Data

CIF for compound 2; CCDC reference: 1909276.

Crystallographic Data

CIF for compound 3a; CCDC reference: 1909277.

Crystallographic Data

CIF for compound 3b; CCDC reference: 1909279.

Crystallographic Data

CIF for compound 4; CCDC reference: 1909278.

Crystallographic Data

CIF for compound 5; CCDC reference: 1909449.

Crystallographic Data

CIF for compound 6a; CCDC reference: 1909450.

Crystallographic Data

CIF for compound 6b; CCDC reference: 1909274.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Unkrig, W., Schmitt, M., Kratzert, D. et al. Synthesis and characterization of crystalline niobium and tantalum carbonyl complexes at room temperature. Nat. Chem. 12, 647–653 (2020). https://doi.org/10.1038/s41557-020-0487-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0487-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing