Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enantioselective radical C–H amination for the synthesis of β-amino alcohols


Asymmetric, radical C–H functionalizations are rare but powerful tools for solving modern synthetic challenges. Specifically, the enantio- and regioselective C–H amination of alcohols to access medicinally valuable chiral β-amino alcohols remains elusive. To solve this challenge, a radical relay chaperone strategy was designed, wherein an alcohol was transiently converted to an imidate radical that underwent intramolecular H-atom transfer (HAT). This regioselective HAT was also rendered enantioselective by harnessing energy transfer catalysis to mediate selective radical generation and interception by a chiral copper catalyst. The successful development of this multi-catalytic, asymmetric, radical C–H amination enabled broad access to chiral β-amino alcohols from a variety of alcohols containing alkyl, allyl, benzyl and propargyl C–H bonds. Mechanistic experiments revealed that triplet energy sensitization of a Cu-bound radical precursor facilitates catalyst-mediated HAT stereoselectivity, enabling the synthesis of several important classes of chiral β-amines by enantioselective, radical C–H amination.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Design of a selective, radical C–H amination for the synthesis of β-amino alcohols.
Fig. 2: Mechanistic experiments.
Fig. 3: Synthetic applications.

Data availability

The data that support the findings of this study are available within the article and its Supplementary Information files.


  1. 1.

    Roughley, S. D. & Jordan, A. M. The medicinal chemist’s toolbox: an analysis of reactions used in the pursuit of drug candidates. J. Med. Chem. 54, 3451–3479 (2011).

    CAS  PubMed  Google Scholar 

  2. 2.

    Park, Y., Kim, Y. & Chang, S. Transition metal-catalyzed C–H amination: scope, mechanism, and applications. Chem. Rev. 117, 9247–9301 (2017).

    CAS  PubMed  Google Scholar 

  3. 3.

    Davies, H. M. L. & Manning, J. R. Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature 451, 417–424 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    CAS  PubMed  Google Scholar 

  5. 5.

    Paudyal, M. P. et al. Dirhodium-catalyzed C–H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Ruffoni, A. et al. Practical and regioselective amination of arenes using alkyl amines. Nat. Chem. 11, 426–433 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    McNally, A., Haffemayer, B., Collins, B. S. L. & Gaunt, M. J. Palladium-catalysed C–H activation of aliphatic amines to give strained nitrogen heterocycles. Nature 510, 129–133 (2014).

    CAS  PubMed  Google Scholar 

  8. 8.

    Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Hong, S. Y. et al. Selective formation of γ-lactams via C–H amidation enabled by tailored iridium catalysts. Science 359, 1016–1021 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Reddy, R. P. & Davies, H. M. L. Dirhodium tetracarboxylates derived from adamantylglycine as chiral catalysts for enantioselective C–H aminations. Org. Lett. 8, 5013–5016 (2006).

    CAS  PubMed  Google Scholar 

  11. 11.

    Zalatan, D. N. & Du Bois, J. A chiral rhodium carboxamidate catalyst for enantioselective C–H amination. J. Am. Chem. Soc. 130, 9220–9221 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Milczek, E., Boudet, N. & Blakey, S. Enantioselective C–H amination using cationic ruthenium(ii)–pybox catalysts. Angew. Chem. Int. Ed. 47, 6825–6828 (2008).

    CAS  Google Scholar 

  13. 13.

    Park, Y. & Chang, S. Asymmetric formation of γ-lactams via C–H amidation enabled by chiral hydrogen-bond-donor catalysts. Nat. Catal. 2, 219–227 (2019).

    CAS  Google Scholar 

  14. 14.

    Hu, Y. et al. Enantioselective radical construction of 5-membered cyclic sulfonamides by metalloradical C–H amination. J. Am. Chem. Soc. 141, 18160–18169 (2019).

    CAS  PubMed  Google Scholar 

  15. 15.

    Yang, Y., Cho, I., Qi, X., Liu, P. & Arnold, F. H. An enzymatic platform for the asymmetric amination of primary, secondary and tertiary C(sp 3)–H bonds. Nat. Chem. 11, 987–993 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Wappes, E. A., Nakafuku, K. M. & Nagib, D. A. Directed β C–H amination of alcohols via radical relay chaperones. J. Am. Chem. Soc. 139, 10204–10207 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Stateman, L. M., Nakafuku, K. M. & Nagib, D. A. Remote C–H functionalization via selective hydrogen atom transfer. Synthesis 50, 1569–1586 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Choi, G. J., Zhu, Q., Miller, D. C., Gu, C. J. & Knowles, R. R. Catalytic alkylation of remote C–H bonds enabled by proton-coupled electron transfer. Nature 539, 268–271 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Chu, J. C. K. & Rovis, T. Amide-directed photoredox-catalysed C–C bond formation at unactivated sp 3 C–H bonds. Nature 539, 272–275 (2016).

    PubMed  PubMed Central  Google Scholar 

  20. 20.

    Twilton, J. et al. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 1, 0052 (2017).

    CAS  Google Scholar 

  21. 21.

    Wang, F., Chen, P. & Liu, G. Copper-catalyzed radical relay for asymmetric radical transformations. Acc. Chem. Res. 51, 2036–2046 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Hossain, A., Bhattacharyya, A. & Reiser, O. Copper’s rapid ascent in visible-light photoredox catalysis. Science 364, eaav9713 (2019).

    PubMed  Google Scholar 

  23. 23.

    Ager, D. J., Prakash, I. & Schaad, D. R. 1,2-Amino alcohols and their heterocyclic derivatives as chiral auxiliaries in asymmetric synthesis. Chem. Rev. 96, 835–875 (1996).

    CAS  PubMed  Google Scholar 

  24. 24.

    Robak, M. T., Herbage, M. A. & Ellman, J. A. Synthesis and applications of tert-butanesulfinamide. Chem. Rev. 110, 3600–3740 (2010).

    CAS  PubMed  Google Scholar 

  25. 25.

    Chang, H. T. & Sharpless, K. B. A practical route to enantiopure 1,2-aminoalcohols. Tetrahedron Lett. 37, 3219–3222 (1996).

    CAS  Google Scholar 

  26. 26.

    Zhang, W. et al. Enantioselective cyanation of benzylic C–H bonds via copper-catalyzed radical relay. Science 353, 1014–1018 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Murphy, J. J., Bastida, D., Paria, S., Fagnoni, M. & Melchiorre, P. Asymmetric catalytic formation of quaternary carbons by iminium ion trapping of radicals. Nature 532, 218–222 (2016).

    CAS  PubMed  Google Scholar 

  28. 28.

    Wang, C., Harms, K. & Meggers, E. Catalytic asymmetric Csp 3−H functionalization under photoredox conditions by radical translocation and stereocontrolled alkene addition. Angew. Chem. Int. Ed. 55, 13495–13498 (2016).

    CAS  Google Scholar 

  29. 29.

    Proctor, R. S. J., Davis, H. J. & Phipps, R. J. Catalytic enantioselective Minisci-type addition to heteroarenes. Science 360, 419–422 (2018).

    CAS  PubMed  Google Scholar 

  30. 30.

    Zhang, W., Wu, L., Chen, P. & Liu, G. Enantioselective arylation of benzylic C−H bonds by copper-catalyzed radical relay. Angew. Chem. Int. Ed. 58, 6425–6429 (2019).

    CAS  Google Scholar 

  31. 31.

    Shin, N. Y., Ryss, J. M., Zhang, X., Miller, S. J. & Knowles, R. R. Light-driven deracemization enabled by excited-state electron transfer. Science 366, 364–369 (2019).

    CAS  PubMed  Google Scholar 

  32. 32.

    Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    CAS  PubMed  Google Scholar 

  33. 33.

    Ni, Z. et al. Highly regioselective copper-catalyzed benzylic C–H amination by N-fluorobenzenesulfonimide. Angew. Chem. Int. Ed. 51, 1244–1247 (2012).

    CAS  Google Scholar 

  34. 34.

    Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

  35. 35.

    Griller, D., Ingold, K. U., Krusic, P. J. & Fischer, H. Configuration of the tert-butyl radical. J. Am. Chem. Soc. 100, 6750–6752 (1978).

    CAS  Google Scholar 

  36. 36.

    Nakafuku, K. M., Fosu, S. C. & Nagib, D. A. Catalytic alkene difunctionalization via imidate radicals. J. Am. Chem. Soc. 140, 11202–11205 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Welin, E. R., Le, C., Arias-Rotondo, D. M., McCusker, J. K. & MacMillan, D. W. C. Photosensitized, energy transfer-mediated organometallic catalysis through electronically excited nickel(ii). Science 355, 380–385 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Gutierrez, O., Tellis, J. C., Primer, D. N., Molander, G. A. & Kozlowski, M. C. Nickel-catalyzed cross-coupling of photoredox-generated radicals: uncovering a general manifold for stereoconvergence in nickel-catalyzed cross-couplings. J. Am. Chem. Soc. 137, 4896–4899 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Kochi, J. K. Electron-transfer mechanisms for organometallic intermediates in catalytic reactions. Acc. Chem. Res. 7, 351–360 (1974).

    CAS  Google Scholar 

  40. 40.

    Kainz, Q. M. et al. Asymmetric copper-catalyzed C–N cross-couplings induced by visible light. Science 351, 681–684 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Farney, E. P. et al. Discovery and elucidation of counteranion dependence in photoredox catalysis. J. Am. Chem. Soc. 141, 6385–6391 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Strieth-Kalthoff, F., James, M. J., Teders, M., Pitzer, L. & Glorius, F. Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem. Soc. Rev. 47, 7190–7202 (2018).

    CAS  PubMed  Google Scholar 

  43. 43.

    Blum, T. R., Miller, Z. D., Bates, D. M., Guzei, I. A. & Yoon, T. P. Enantioselective photochemistry through Lewis acid-catalyzed triplet energy transfer. Science 354, 1391–1395 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wang, Y.-F., Chen, H., Zhu, X. & Chiba, S. Copper-catalyzed aerobic aliphatic C–H oxygenation directed by an amidine moiety. J. Am. Chem. Soc. 134, 11980–11983 (2012).

    CAS  PubMed  Google Scholar 

  45. 45.

    Alderson, J. M., Corbin, J. R. & Schomaker, J. M. Tunable, chemo- and site-selective nitrene transfer reactions through the rational design of silver(i) catalysts. Acc. Chem. Res. 50, 2147–2158 (2017).

    CAS  PubMed  Google Scholar 

  46. 46.

    Korth, H. G., Trill, H. & Sustmann, R. [1-2H]-Allyl radical: barrier to rotation and allyl delocalization energy. J. Am. Chem. Soc. 103, 4483–4489 (1981).

    CAS  Google Scholar 

  47. 47.

    Newcomb, M., Johnson, C. C., Manek, M. B. & Varick, T. R. Picosecond radical kinetics. Ring openings of phenyl-substituted cyclopropylcarbinyl radicals. J. Am. Chem. Soc. 114, 10915–10921 (1992).

    CAS  Google Scholar 

  48. 48.

    Gloor, C. S., Dénès, F. & Renaud, P. Memory of chirality in reactions involving monoradicals. Free Radic. Res. 50, S102–S111 (2016).

    CAS  PubMed  Google Scholar 

  49. 49.

    Wüstenberg, B. & Pfaltz, A. Homogeneous hydrogenation of tri- and tetrasubstituted olefins: comparison of iridium–phospinooxazoline [Ir–PHOX] complexes and Crabtree catalysts with hexafluorophosphate (PF6) and tetrakis[3,5-bis(trifluoromethyl) phenyl]borate (BArF) as counterions. Adv. Synth. Catal. 350, 174–178 (2008).

Download references


Financial support was provided by the National Institutes of Health (NIH R35 GM119812) and National Science Foundation (NSF CAREER 1654656). L.M.S. is supported by an NSF graduate fellowship. Calculations were performed using resources at the Ohio Supercomputer Center.

Author information




K.M.N. designed and discovered the enantioselective C–H amination. K.M.N., E.A.W. and Z.Z. developed the optimized method. Z.Z. evaluated the synthetic scope. Z.Z. and L.M.S. performed the mechanistic experiments and derivatizations. A.D.C. performed the calculations. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to David A. Nagib.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–3, Tables 1–7, new compound characterization, and mechanistic and density functional theory experiments.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakafuku, K.M., Zhang, Z., Wappes, E.A. et al. Enantioselective radical C–H amination for the synthesis of β-amino alcohols. Nat. Chem. 12, 697–704 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing