Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A site-selective amination catalyst discriminates between nearly identical C–H bonds of unsymmetrical disubstituted alkenes

Abstract

C–H activation reactions enable chemists to unveil new retrosynthetic disconnections and streamline conventional synthetic approaches. A long-standing challenge in C–H activation is the inability to distinguish electronically and sterically similar C–H bonds. Although numerous synergistic combinations of transition-metal complexes and chelating directing groups have been utilized to distinguish C–H bonds, undirected regioselective C–H functionalization strategies remain elusive. Here we report a regioselective C–H activation/amination reaction of various unsymmetrical dialkyl-substituted alkenes. The regioselectivity of C–H activation is correlated to the electronic properties of allylic C–H bonds indicated by the corresponding 1JCH coupling constants. A linear relationship between the difference in the 1JCH coupling constants of the two competing allylic C–H bonds (Δ1JCH) and the C–H activation barriers (ΔΔG) has also been determined.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Site-selective allylic C–H amination.
Fig. 2: Study of regioselectivities in C–H amination of unsymmetrical trans-1,2-disubstituted alkenes.
Fig. 3: Study of the origin of regioselectivities.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this published article and its Supplementary Information.

References

  1. McMurray, L., O’Hara, F. & Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C–H bond functionalisation. Chem. Soc. Rev. 40, 1885–1898 (2011).

    CAS  PubMed  Google Scholar 

  2. Gutekunst, W. R. & Baran, P. S. C–H functionalization logic in total synthesis. Chem. Soc. Rev. 40, 1976–1991 (2011).

    CAS  PubMed  Google Scholar 

  3. Yamaguchi, J., Yamaguchi, A. D. & Itami, K. C–H bond functionalization: emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed. 51, 8960–9009 (2012).

    CAS  Google Scholar 

  4. Cernak, T., Dykstra, K. D., Tyagarajan, S., Vachal, P. & Krska, S. W. The medicinal chemist’s toolbox for late stage functionalization of drug-like molecules. Chem. Soc. Rev. 45, 546–576 (2016).

    CAS  PubMed  Google Scholar 

  5. Colby, D. A., Bergman, R. G. & Ellman, J. A. Rhodium-catalyzed C–C bond formation via heteroatom-directed C–H bond activation. Chem. Rev. 110, 624–655 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Lyons, T. W. & Sanford, M. S. Palladium-catalyzed ligand-directed C–H functionalization reactions. Chem. Rev. 110, 1147–1169 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. He, J., Wasa, M., Chan, K. S. L., Shao, Q. & Yu, J. Q. Palladium-catalyzed transformations of alkyl C–H bonds. Chem. Rev. 117, 8754–8786 (2017).

    CAS  PubMed  Google Scholar 

  8. Sambiagio, C. et al. A comprehensive overview of directing groups applied in metal-catalysed C–H functionalisation chemistry. Chem. Soc. Rev. 47, 6603–6743 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Newhouse, T. & Baran, P. S. If C–H bonds could talk: selective C–H bond oxidation. Angew. Chem. Int. Ed. 50, 3362–3374 (2011).

    CAS  Google Scholar 

  10. Hartwig, J. F. & Larsen, M. A. Undirected, homogeneous C–H bond functionalization: challenges and opportunities. ACS Cent. Sci. 2, 281–292 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Xue, X. S., Ji, P., Zhou, B. & Cheng, J. P. The essential role of bond energetics in C–H activation/functionalization. Chem. Rev. 117, 8622–8648 (2017).

    CAS  PubMed  Google Scholar 

  12. Romero, N. A., Margrey, K. A., Tay, N. E. & Nicewicz, D. A. Site-selective arene C–H amination via photoredox catalysis. Science 349, 1326–1330 (2015).

    CAS  PubMed  Google Scholar 

  13. Paudyal, M. P. et al. Dirhodium-catalyzed C–H arene amination using hydroxylamines. Science 353, 1144–1147 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Berger, F. et al. Site-selective and versatile aromatic C–H functionalization by thianthrenation. Nature 567, 223–228 (2019).

    CAS  PubMed  Google Scholar 

  15. Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    CAS  PubMed  Google Scholar 

  16. Schmidt, V. A., Quinn, R. K., Bruscoe, A. T. & Alexanian, E. J. Site-selective aliphatic C–H bromination using N-bromoamides and visible light. J. Am. Chem. Soc. 136, 14389–14392 (2014).

    CAS  PubMed  Google Scholar 

  17. Sharma, A. & Hartwig, J. F. Metal-catalysed azidation of tertiary C–H bonds suitable for late-stage functionalization. Nature 517, 600–604 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Eames, J. & Watkinson, M. Catalytic allylic oxidation of alkenes using an asymmetric Kharasch–Sosnovsky reaction. Angew. Chem. Int. Ed. 40, 3567–3571 (2001).

    CAS  Google Scholar 

  19. Sharma, A. & Hartwig, J. F. Enantioselective functionalization of allylic C–H bonds following a strategy of functionalization and diversification. J. Am. Chem. Soc. 135, 17983–17989 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Cuthbertson, J. D. & MacMillan, D. W. C. The direct arylation of allylic sp3 C–H bonds via organic and photoredox catalysis. Nature 519, 74–77 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Liu, W., Ali, S. Z., Ammann, S. E. & White, M. C. Asymmetric allylic C–H alkylation via palladium(ii)/cis-ArSOX catalysis. J. Am. Chem. Soc. 140, 10658–10662 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li, J. et al. Site-specific allylic C–H bond functionalization with a copper-bound N-centred radical. Nature 574, 516–521 (2019).

    CAS  PubMed  Google Scholar 

  23. Reed, S. A. & White, M. C. Catalytic intermolecular linear allylic C–H amination via heterobimetallic catalysis. J. Am. Chem. Soc. 130, 3316–3318 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu, G., Yin, G. & Wu, L. Palladium-catalyzed intermolecular aerobic oxidative amination of terminal alkenes: efficient synthesis of linear allylamine derivatives. Angew. Chem. Int. Ed. 47, 4733–4736 (2008).

    CAS  Google Scholar 

  25. Bao, H. & Tambar, U. K. Catalytic enantioselective allylic amination of unactivated terminal olefins via an ene reaction/[2,3]-rearrangement. J. Am. Chem. Soc. 134, 18495–18498 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Burman, J. S. & Blakey, S. B. Regioselective intermolecular allylic C–H amination of disubstituted olefins via rhodium/π-allyl intermediates. Angew. Chem. Int. Ed. 56, 13666–13669 (2017).

    CAS  Google Scholar 

  27. Lei, H. & Rovis, T. Ir-catalyzed intermolecular branch-selective allylic C–H amidation of unactivated terminal olefins. J. Am. Chem. Soc. 141, 2268–2273 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Knecht, T., Mondal, S., Ye, J. H., Das, M. & Glorius, F. Intermolecular, branch-selective, and redox-neutral Cp*IrIII-catalyzed allylic C–H amidation. Angew. Chem. Int. Ed. 58, 7117–7121 (2019).

    CAS  Google Scholar 

  29. Burman, J. S., Harris, R. J., Farr, C. M. B., Bacsa, J. & Blakey, S. B. Rh(iii) and Ir(iii)Cp* complexes provide complementary regioselectivity profiles in intermolecular allylic C–H amidation reactions. ACS Catal. 9, 5474–5479 (2019).

    CAS  Google Scholar 

  30. Liang, C. et al. Toward a synthetically useful stereoselective C–H amination of hydrocarbons. J. Am. Chem. Soc. 130, 343–350 (2008).

    CAS  PubMed  Google Scholar 

  31. Lescot, C., Darses, B., Collet, F., Retailleau, P. & Dauban, P. Intermolecular C–H amination of complex molecules: insights into the factors governing the selectivity. J. Org. Chem. 77, 7232–7240 (2012).

    CAS  PubMed  Google Scholar 

  32. Bayeh, L., Le, P. Q. & Tambar, U. K. Catalytic allylic oxidation of internal alkenes to a multifunctional chiral building block. Nature 547, 196–200 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Nishioka, Y., Uchida, T. & Katsuki, T. Enantio- and regioselective intermolecular benzylic and allylic C–H bond amination. Angew. Chem. Int. Ed. 52, 1739–1742 (2013).

    CAS  Google Scholar 

  34. Szabó, K. J. Nature of the interaction between β-substituents and the allyl moiety in (η3-allyl)palladium complexes. Chem. Soc. Rev. 30, 136–143 (2001).

    Google Scholar 

  35. Piou, T. et al. Correlating reactivity and selectivity to cyclopentadienyl ligand properties in Rh(iii)-catalyzed C–H activation reactions: an experimental and computational study. J. Am. Chem. Soc. 139, 1296–1310 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Piou, T. & Rovis, T. Electronic and steric tuning of a prototypical piano stool complex: Rh(iii) catalysis for C–H functionalization. Acc. Chem. Res. 51, 170–180 (2018).

    CAS  PubMed  Google Scholar 

  37. Hansen, P. E. Carbon–hydrogen spin–spin coupling constants. Prog. Nucl. Magn. Reson. Spectrosc. 14, 175–295 (1981).

    CAS  Google Scholar 

  38. Yoder, C. H., Tuck, R. H. & Hess, R. E. Nuclear magnetic resonance studies of the bonding in aromatic systems. Correlation of Hammett sigma constants with methyl 13C–H coupling constants and chemical shifts. J. Am. Chem. Soc. 91, 539–543 (1969).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank NIGMS (GM80442) for support. We thank J. Decatur for assistance with determining 1JCH coupling constants.

Author information

Authors and Affiliations

Authors

Contributions

H.L. and T.R. conceived and initiated the study. H.L. designed and conducted the experiments. H.L. and T.R. co-wrote the manuscript.

Corresponding author

Correspondence to Tomislav Rovis.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental procedures, characterization data and mechanistic studies, Supplementary Fig. 1 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, H., Rovis, T. A site-selective amination catalyst discriminates between nearly identical C–H bonds of unsymmetrical disubstituted alkenes. Nat. Chem. 12, 725–731 (2020). https://doi.org/10.1038/s41557-020-0470-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0470-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing