Aerobic radical polymerization mediated by microbial metabolism

Abstract

Performing radical polymerizations under ambient conditions is a major challenge because molecular oxygen is an effective radical quencher. Here we show that the facultative electrogen Shewanella oneidensis can control metal-catalysed living radical polymerizations under apparent aerobic conditions by first consuming dissolved oxygen via aerobic respiration, and then directing extracellular electron flux to a metal catalyst. In both open and closed containers, S. oneidensis enabled living radical polymerizations without requiring the preremoval of oxygen. Polymerization activity was closely tied to S. oneidensis anaerobic metabolism through specific extracellular electron transfer proteins and was effective for a variety of monomers using low (parts per million) concentrations of metal catalysts. Finally, polymerizations survived repeated challenges of oxygen exposure and could be initiated using lyophilized or spent (recycled) cells. Overall, our results demonstrate how the unique ability of S. oneidensis to use both oxygen and metals as respiratory electron acceptors can be leveraged to address salient challenges in polymer synthesis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Carbon oxidation in S. oneidensis is coupled to either oxygen reduction under aerobic conditions or EET pathways under anaerobic conditions.
Fig. 2: S. oneidensis rapidly consumes dissolved oxygen and activates radical polymerization in cultures for which no additional steps were taken to remove oxygen.
Fig. 3: S. oneidensis strain and Cu(ii/i) ligand control polymerization kinetics under anaerobic and aerobic conditions.
Fig. 4: Radical polymerization was effective for a variety of metal catalysts in addition to Cu.
Fig. 5: Aerobic S. oneidensis polymerizations can be used to prepare block copolymers and restarts automatically after multiple oxygen exposures.
Fig. 6: Aerobic polymerizations are effective using lyophilized and spent S. oneidensis cells.

Data availability

Raw data supporting the findings in this study are available through the Texas Data Repository (https://doi.org/10.18738/T8/KHF1AY).

References

  1. 1.

    Matyjaszewski, K., Coca, S., Gaynor, S. G., Wei, M. & Woodworth, B. E. Controlled radical polymerization in the presence of oxygen. Macromolecules 31, 5967–5969 (1998).

  2. 2.

    Matyjaszewski, K., Patten, T. E. & Xia, J. Controlled ‘living’ radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. J. Am. Chem. Soc. 119, 674–680 (1997).

  3. 3.

    Chapman, R., Gormley, A. J., Herpoldt, K.-L. & Stevens, M. Highly controlled open vessel RAFT polymerizations by enzyme degassing. Macromolecules 47, 8541–8547 (2014).

  4. 4.

    Chapman, R., Gormley, A. J., Stenzel, M. H. & Stevens, M. Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing. Angew. Chem. Int. Ed. 128, 4576–4579 (2016).

  5. 5.

    Oytun, F., Kahveci, M. U. & Yagci, Y. Sugar overcomes oxygen inhibition in photoinitiated free radical polymerization. J. Polym. Sci. A 51, 1685–1689 (2013).

  6. 6.

    Enciso, A. E., Fu, L., Russell, A. J. & Matyjaszewski, K. A breathing atom-transfer radical polymerization: fully oxygen-tolerant polymerization inspired by aerobic respiration of cells. Angew. Chem. Int. Ed. 57, 933–936 (2018).

  7. 7.

    Wang, Y., Fu, L. & Matyjaszewski, K. Enzyme-deoxygenated low parts per million atom transfer radical polymerization in miniemulsion and ab initio emulsion. ACS Macro Lett. 7, 1317–1321 (2018).

  8. 8.

    Enciso, A. E. et al. Biocatalytic ‘oxygen-fueled’ atom transfer radical polymerization. Angew. Chem. Int. Ed. 57, 16157–16161 (2018).

  9. 9.

    Pester, C. W. et al. Engineering surfaces through sequential stop–flow photopatterning. Adv. Mater. 28, 9292–9300 (2016).

  10. 10.

    Narupai, B. et al. Simultaneous preparation of multiple polymer brushes under ambient conditions using microliter volumes. Angew. Chem. Int. Ed. 57, 13433–13438 (2018).

  11. 11.

    Gormley, A. J. et al. An oxygen-tolerant PET-RAFT polymerization for screening structure–activity relationships. Angew. Chem. Int. Ed. 57, 1557–1562 (2018).

  12. 12.

    Yeow, J., Chapman, R., Gormley, A. J. & Boyer, C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem. Soc. Rev. 47, 4357–4387 (2018).

  13. 13.

    Fan, G., Dundas, C., Graham, A. J., Lynd, N. A. & Keitz, B. K. Shewanella oneidensis as a living electrode for controlled radical polymerization. Proc. Natl Acad. Sci. USA 115, 4559–4564 (2018).

  14. 14.

    Tang, W. & Matyjaszewski, K. Effect of ligand structure on activation rate constants in ATRP. Macromolecules 39, 4953–4959 (2006).

  15. 15.

    Chmielarz, P., Park, S., Simakova, A. & Matyjaszewski, K. Electrochemically mediated ATRP of acrylamides in water. Polymer 60, 302–307 (2015).

  16. 16.

    Fantin, M., Isse, A. A., Gennaro, A. & Matyjaszewski, K. Understanding the fundamentals of aqueous ATRP and defining conditions for better control. Macromolecules 48, 6862–6875 (2015).

  17. 17.

    Breuer, M., Rosso, K. M. & Blumberger, J. Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc. Natl Acad. Sci. USA 111, 611–616 (2014).

  18. 18.

    Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

  19. 19.

    Silva, T. B. et al. Hemoglobin and red blood cells catalyze atom transfer radical polymerization. Biomacromolecules 14, 2703–2712 (2013).

  20. 20.

    Simakova, A., Mackenzie, M., Averick, S. E., Park, S. & Matyjaszewski, K. Bioinspired iron-based catalyst for atom transfer radical polymerization. Angew. Chem. Int. Ed. 52, 12148–12151 (2013).

  21. 21.

    Debuigne, A., Poli, R., Jérôme, C., Jérôme, R. & Detrembleur, C. Overview of cobalt-mediated radical polymerization: roots, state of the art and future prospects. Prog. Polym. Sci. 34, 211–239 (2009).

  22. 22.

    Peng, C.-H., Yang, T.-Y., Zhao, Y. & Fu, X. Reversible deactivation radical polymerization mediated by cobalt complexes: recent progress and perspectives. Org. Biomol. Chem. 12, 8580–8587 (2014).

  23. 23.

    Granel, C., Dubois, Jérôme, R. & Teyssié, P. Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(ii) complex and different activated alkyl halides. Macromolecules 29, 8576–8582 (1996).

  24. 24.

    Uegaki, H., Kotani, Y., Kamigaito, M. & Sawamoto, M. Nickel-mediated living radical polymerization of methyl methacrylate. Macromolecules 30, 2249–2253 (1997).

  25. 25.

    Ouchi, M., Yoda, H., Terashima, T. & Sawamoto, M. Aqueous metal-catalyzed living radical polymerization: highly active water-assisted catalysis. Polym. J. 44, 51–58 (2011).

  26. 26.

    Beliaev, A. et al. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 187, 7138–7145 (2005).

  27. 27.

    Workman, D. J., Woods, S. L., Gorby, Y. A., Fredrickson, J. K. & Truex, M. J. Microbial reduction of vitamin B12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride. Environ. Sci. Technol. 31, 2292–2297 (1997).

  28. 28.

    Amonette, J. E., Workman, D. J., Kennedy, D. W., Fruchter, J. S. & Gorby, Y. A. Dechlorination of carbon tetrachloride by Fe(ii) associated with goethite. Environ. Sci. Technol. 34, 4606–4613 (2000).

  29. 29.

    McKenna, R. & Nielsen, D. R. Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 13, 544–554 (2011).

  30. 30.

    Kasai, T., Kouzuma, A., Nojiri, H. & Watanabe, K. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC Microbiol. 15, 68 (2015).

  31. 31.

    Geng, J. et al. Radical polymerization inside living cells. Nat. Chem. 11, 578–586 (2019).

  32. 32.

    Niu, J. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9, 537–545 (2017).

  33. 33.

    Romero, G. et al. Protective polymer coatings for high-throughput, high-purity cellular isolation. ACS Appl. Mater. Inter. 7, 17598–17602 (2015).

  34. 34.

    McCarthy, B. & Miyake, G. M. Organocatalyzed atom transfer radical polymerization catalyzed by core modified N-aryl phenoxazines performed under air. ACS Macro. Lett. 7, 1016–1021 (2018).

  35. 35.

    Corrigan, N., Rosli, D., Jones, J., Xu, J. & Boyer, C. Oxygen tolerance in living radical polymerization: investigation of mechanism and implementation in continuous flow polymerization. Macromolecules 49, 6779–6789 (2016).

  36. 36.

    Simakova, A., Averick, S. E., Konkolewicz, D. & Matyjaszewski, K. Aqueous ARGET ATRP. Macromolecules 45, 6371–6379 (2012).

  37. 37.

    Sekar, R. & DiChristina, T. J. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Environ. Sci. Technol. 48, 12858–12867 (2014).

  38. 38.

    Kotloski, N. J. & Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4, e00553–12 (2013).

  39. 39.

    Batchelor, R., Kwandou, G., Spicer, P. & Stenzel, M. (−)-Riboflavin (vitamin B2) and flavin mononucleotide as visible light photo initiators in the thiol–ene polymerisation of PEG-based hydrogels. Polym. Chem. 8, 980–984 (2017).

  40. 40.

    Edwards, M., White, G. & Norman, M. Redox linked flavin sites in extracellular decaheme proteins involved in microbe–mineral electron transfer. Sci. Rep. 5, 11677 (2015).

  41. 41.

    Ribelli, T. G., Lorandi, F., Fantin, M. & Matyjaszewski, K. Atom transfer radical polymerization: billion times more active catalysts and new initiation systems. Macromol. Rapid Comm. 40, e1800616 (2019).

  42. 42.

    Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007).

  43. 43.

    Venkateswaran, K. et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Evol. Microbiol. 49, 705–724 (1999).

  44. 44.

    Tang, Y. J. et al. Invariability of central metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbations. Biotechnol. Progr. 25, 1254–1259 (2009).

  45. 45.

    Lovley, D., Phillips, E. & Lonergan, D. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55, 700–706 (1989).

  46. 46.

    Feng, X., Xu, Y., Chen, Y. & Tang, Y. J. Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput. Biol. 8, e1002376–12 (2012).

  47. 47.

    Ishiki, K. & Shiigi, H. Kinetics of intracellular electron generation in Shewanella oneidensis MR-1. Anal. Chem. 91, 14401–14406.

  48. 48.

    Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).

  49. 49.

    Veit, A., Polen, T. & Wendisch, V. F. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl. Microbiol. Biotechnol. 74, 406–421 (2006).

  50. 50.

    Zhu, J., Sánchez, A., Bennett, G. N. & San, K.-Y. Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products. Metab. Eng. 13, 704–712 (2011).

  51. 51.

    Joshi, K., Kane, A. L., Kotloski, N. J., Gralnick, J. A. & Bond, D. R. Preventing hydrogen disposal increases electrode utilization efficiency by Shewanella oneidensis. Front. Energy Res. 7, 95 (2019).

  52. 52.

    Yang, Y. et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4, 815–823 (2015).

  53. 53.

    Choi, D. et al. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions. Bioresource Technol. 154, 59–66 (2014).

  54. 54.

    Jensen, H. M. et al. Engineering of a synthetic electron conduit in living cells. Proc. Natl Acad. Sci. USA 107, 19213–19218 (2010).

  55. 55.

    Jensen, H. M., TerAvest, M. A., Kokish, M. G. & Ajo-Franklin, C. M. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 5, 679–688 (2016).

  56. 56.

    Long, C. P., Gonzalez, J. E., Cipolla, R. M. & Antoniewicz, M. R. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis. Metab. Eng. 44, 191–197 (2017).

  57. 57.

    Hunt, K., Flynn, J., Naranjo, B., Shikhare, I. & Gralnick, J. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J. Bacteriol. 192, 3345–3351 (2010).

Download references

Acknowledgements

We thank G. Bora, J. Imbrogno, M. Chwatko and J. Wagner for their experimental assistance. S. oneidensis knockouts were a generous gift from J. Gralnick. A.J.G. was supported through a National Science Foundation Graduate Research Fellowship (Program Award no. DGE-1610403). J.K. was supported through the Welch Foundation (Grant H-F-0001) during the Welch Summer Scholars Program. We gratefully acknowledge the use of facilities within the core microscopy lab of the Institute for Cellular and Molecular Biology, University of Texas at Austin. H. Alper is thanked for the use of a BioLector Pro. The research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award no. R35GM133640. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional research support was provided by the Welch Foundation (Grants F-1929 and F-1904) and by the National Science Foundation through the Center for Dynamics and Control of Materials—an NSF Materials Research Science and Engineering Center under Cooperative Agreement DMR- 1720595. NMR spectra were collected on a Bruker Avance III 500 funded by the NIH (Award 1 S10 OD021508-01) and a Bruker Avance III HD 400 funded by the NSF (Award CHE 1626211).

Author information

Affiliations

Authors

Contributions

G.F., A.J.G., N.A.L. and B.K.K. designed the research; G.F., A.J.G. and J.K. performed the research; N.A.L. contributed new reagents and analytic tools; G.F., A.J.G., N.A.L. and B.K.K. analysed the data and wrote the paper.

Corresponding author

Correspondence to Benjamin K. Keitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information containing a description of the Materials and Methods, Tables 1–5 and Figs. 1–24.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Graham, A.J., Kolli, J. et al. Aerobic radical polymerization mediated by microbial metabolism. Nat. Chem. (2020). https://doi.org/10.1038/s41557-020-0460-1

Download citation