Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Aerobic radical polymerization mediated by microbial metabolism

Abstract

Performing radical polymerizations under ambient conditions is a major challenge because molecular oxygen is an effective radical quencher. Here we show that the facultative electrogen Shewanella oneidensis can control metal-catalysed living radical polymerizations under apparent aerobic conditions by first consuming dissolved oxygen via aerobic respiration, and then directing extracellular electron flux to a metal catalyst. In both open and closed containers, S. oneidensis enabled living radical polymerizations without requiring the preremoval of oxygen. Polymerization activity was closely tied to S. oneidensis anaerobic metabolism through specific extracellular electron transfer proteins and was effective for a variety of monomers using low (parts per million) concentrations of metal catalysts. Finally, polymerizations survived repeated challenges of oxygen exposure and could be initiated using lyophilized or spent (recycled) cells. Overall, our results demonstrate how the unique ability of S. oneidensis to use both oxygen and metals as respiratory electron acceptors can be leveraged to address salient challenges in polymer synthesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Carbon oxidation in S. oneidensis is coupled to either oxygen reduction under aerobic conditions or EET pathways under anaerobic conditions.
Fig. 2: S. oneidensis rapidly consumes dissolved oxygen and activates radical polymerization in cultures for which no additional steps were taken to remove oxygen.
Fig. 3: S. oneidensis strain and Cu(ii/i) ligand control polymerization kinetics under anaerobic and aerobic conditions.
Fig. 4: Radical polymerization was effective for a variety of metal catalysts in addition to Cu.
Fig. 5: Aerobic S. oneidensis polymerizations can be used to prepare block copolymers and restarts automatically after multiple oxygen exposures.
Fig. 6: Aerobic polymerizations are effective using lyophilized and spent S. oneidensis cells.

Similar content being viewed by others

Data availability

Raw data supporting the findings in this study are available through the Texas Data Repository (https://doi.org/10.18738/T8/KHF1AY).

References

  1. Matyjaszewski, K., Coca, S., Gaynor, S. G., Wei, M. & Woodworth, B. E. Controlled radical polymerization in the presence of oxygen. Macromolecules 31, 5967–5969 (1998).

    CAS  Google Scholar 

  2. Matyjaszewski, K., Patten, T. E. & Xia, J. Controlled ‘living’ radical polymerization. Kinetics of the homogeneous atom transfer radical polymerization of styrene. J. Am. Chem. Soc. 119, 674–680 (1997).

    CAS  Google Scholar 

  3. Chapman, R., Gormley, A. J., Herpoldt, K.-L. & Stevens, M. Highly controlled open vessel RAFT polymerizations by enzyme degassing. Macromolecules 47, 8541–8547 (2014).

    CAS  Google Scholar 

  4. Chapman, R., Gormley, A. J., Stenzel, M. H. & Stevens, M. Combinatorial low-volume synthesis of well-defined polymers by enzyme degassing. Angew. Chem. Int. Ed. 128, 4576–4579 (2016).

    Google Scholar 

  5. Oytun, F., Kahveci, M. U. & Yagci, Y. Sugar overcomes oxygen inhibition in photoinitiated free radical polymerization. J. Polym. Sci. A 51, 1685–1689 (2013).

    CAS  Google Scholar 

  6. Enciso, A. E., Fu, L., Russell, A. J. & Matyjaszewski, K. A breathing atom-transfer radical polymerization: fully oxygen-tolerant polymerization inspired by aerobic respiration of cells. Angew. Chem. Int. Ed. 57, 933–936 (2018).

    CAS  Google Scholar 

  7. Wang, Y., Fu, L. & Matyjaszewski, K. Enzyme-deoxygenated low parts per million atom transfer radical polymerization in miniemulsion and ab initio emulsion. ACS Macro Lett. 7, 1317–1321 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Enciso, A. E. et al. Biocatalytic ‘oxygen-fueled’ atom transfer radical polymerization. Angew. Chem. Int. Ed. 57, 16157–16161 (2018).

    CAS  Google Scholar 

  9. Pester, C. W. et al. Engineering surfaces through sequential stop–flow photopatterning. Adv. Mater. 28, 9292–9300 (2016).

    CAS  PubMed  Google Scholar 

  10. Narupai, B. et al. Simultaneous preparation of multiple polymer brushes under ambient conditions using microliter volumes. Angew. Chem. Int. Ed. 57, 13433–13438 (2018).

    CAS  Google Scholar 

  11. Gormley, A. J. et al. An oxygen-tolerant PET-RAFT polymerization for screening structure–activity relationships. Angew. Chem. Int. Ed. 57, 1557–1562 (2018).

    CAS  Google Scholar 

  12. Yeow, J., Chapman, R., Gormley, A. J. & Boyer, C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem. Soc. Rev. 47, 4357–4387 (2018).

    CAS  PubMed  Google Scholar 

  13. Fan, G., Dundas, C., Graham, A. J., Lynd, N. A. & Keitz, B. K. Shewanella oneidensis as a living electrode for controlled radical polymerization. Proc. Natl Acad. Sci. USA 115, 4559–4564 (2018).

    CAS  PubMed  Google Scholar 

  14. Tang, W. & Matyjaszewski, K. Effect of ligand structure on activation rate constants in ATRP. Macromolecules 39, 4953–4959 (2006).

    CAS  Google Scholar 

  15. Chmielarz, P., Park, S., Simakova, A. & Matyjaszewski, K. Electrochemically mediated ATRP of acrylamides in water. Polymer 60, 302–307 (2015).

    CAS  Google Scholar 

  16. Fantin, M., Isse, A. A., Gennaro, A. & Matyjaszewski, K. Understanding the fundamentals of aqueous ATRP and defining conditions for better control. Macromolecules 48, 6862–6875 (2015).

    CAS  Google Scholar 

  17. Breuer, M., Rosso, K. M. & Blumberger, J. Electron flow in multiheme bacterial cytochromes is a balancing act between heme electronic interaction and redox potentials. Proc. Natl Acad. Sci. USA 111, 611–616 (2014).

    CAS  PubMed  Google Scholar 

  18. Shi, L. et al. Extracellular electron transfer mechanisms between microorganisms and minerals. Nat. Rev. Microbiol. 14, 651–662 (2016).

    CAS  PubMed  Google Scholar 

  19. Silva, T. B. et al. Hemoglobin and red blood cells catalyze atom transfer radical polymerization. Biomacromolecules 14, 2703–2712 (2013).

    CAS  PubMed  Google Scholar 

  20. Simakova, A., Mackenzie, M., Averick, S. E., Park, S. & Matyjaszewski, K. Bioinspired iron-based catalyst for atom transfer radical polymerization. Angew. Chem. Int. Ed. 52, 12148–12151 (2013).

    CAS  Google Scholar 

  21. Debuigne, A., Poli, R., Jérôme, C., Jérôme, R. & Detrembleur, C. Overview of cobalt-mediated radical polymerization: roots, state of the art and future prospects. Prog. Polym. Sci. 34, 211–239 (2009).

    CAS  Google Scholar 

  22. Peng, C.-H., Yang, T.-Y., Zhao, Y. & Fu, X. Reversible deactivation radical polymerization mediated by cobalt complexes: recent progress and perspectives. Org. Biomol. Chem. 12, 8580–8587 (2014).

    CAS  PubMed  Google Scholar 

  23. Granel, C., Dubois, Jérôme, R. & Teyssié, P. Controlled radical polymerization of methacrylic monomers in the presence of a bis(ortho-chelated) arylnickel(ii) complex and different activated alkyl halides. Macromolecules 29, 8576–8582 (1996).

    CAS  Google Scholar 

  24. Uegaki, H., Kotani, Y., Kamigaito, M. & Sawamoto, M. Nickel-mediated living radical polymerization of methyl methacrylate. Macromolecules 30, 2249–2253 (1997).

    CAS  Google Scholar 

  25. Ouchi, M., Yoda, H., Terashima, T. & Sawamoto, M. Aqueous metal-catalyzed living radical polymerization: highly active water-assisted catalysis. Polym. J. 44, 51–58 (2011).

    Google Scholar 

  26. Beliaev, A. et al. Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors. J. Bacteriol. 187, 7138–7145 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Workman, D. J., Woods, S. L., Gorby, Y. A., Fredrickson, J. K. & Truex, M. J. Microbial reduction of vitamin B12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride. Environ. Sci. Technol. 31, 2292–2297 (1997).

    CAS  Google Scholar 

  28. Amonette, J. E., Workman, D. J., Kennedy, D. W., Fruchter, J. S. & Gorby, Y. A. Dechlorination of carbon tetrachloride by Fe(ii) associated with goethite. Environ. Sci. Technol. 34, 4606–4613 (2000).

    CAS  Google Scholar 

  29. McKenna, R. & Nielsen, D. R. Styrene biosynthesis from glucose by engineered E. coli. Metab. Eng. 13, 544–554 (2011).

    CAS  PubMed  Google Scholar 

  30. Kasai, T., Kouzuma, A., Nojiri, H. & Watanabe, K. Transcriptional mechanisms for differential expression of outer membrane cytochrome genes omcA and mtrC in Shewanella oneidensis MR-1. BMC Microbiol. 15, 68 (2015).

    PubMed  PubMed Central  Google Scholar 

  31. Geng, J. et al. Radical polymerization inside living cells. Nat. Chem. 11, 578–586 (2019).

    CAS  PubMed  Google Scholar 

  32. Niu, J. et al. Engineering live cell surfaces with functional polymers via cytocompatible controlled radical polymerization. Nat. Chem. 9, 537–545 (2017).

    CAS  PubMed  Google Scholar 

  33. Romero, G. et al. Protective polymer coatings for high-throughput, high-purity cellular isolation. ACS Appl. Mater. Inter. 7, 17598–17602 (2015).

    CAS  Google Scholar 

  34. McCarthy, B. & Miyake, G. M. Organocatalyzed atom transfer radical polymerization catalyzed by core modified N-aryl phenoxazines performed under air. ACS Macro. Lett. 7, 1016–1021 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Corrigan, N., Rosli, D., Jones, J., Xu, J. & Boyer, C. Oxygen tolerance in living radical polymerization: investigation of mechanism and implementation in continuous flow polymerization. Macromolecules 49, 6779–6789 (2016).

    CAS  Google Scholar 

  36. Simakova, A., Averick, S. E., Konkolewicz, D. & Matyjaszewski, K. Aqueous ARGET ATRP. Macromolecules 45, 6371–6379 (2012).

    CAS  Google Scholar 

  37. Sekar, R. & DiChristina, T. J. Microbially driven Fenton reaction for degradation of the widespread environmental contaminant 1,4-dioxane. Environ. Sci. Technol. 48, 12858–12867 (2014).

    CAS  PubMed  Google Scholar 

  38. Kotloski, N. J. & Gralnick, J. A. Flavin electron shuttles dominate extracellular electron transfer by Shewanella oneidensis. mBio 4, e00553–12 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Batchelor, R., Kwandou, G., Spicer, P. & Stenzel, M. (−)-Riboflavin (vitamin B2) and flavin mononucleotide as visible light photo initiators in the thiol–ene polymerisation of PEG-based hydrogels. Polym. Chem. 8, 980–984 (2017).

    CAS  Google Scholar 

  40. Edwards, M., White, G. & Norman, M. Redox linked flavin sites in extracellular decaheme proteins involved in microbe–mineral electron transfer. Sci. Rep. 5, 11677 (2015).

    PubMed  PubMed Central  Google Scholar 

  41. Ribelli, T. G., Lorandi, F., Fantin, M. & Matyjaszewski, K. Atom transfer radical polymerization: billion times more active catalysts and new initiation systems. Macromol. Rapid Comm. 40, e1800616 (2019).

    Google Scholar 

  42. Hau, H. H. & Gralnick, J. A. Ecology and biotechnology of the genus Shewanella. Annu. Rev. Microbiol. 61, 237–258 (2007).

    CAS  PubMed  Google Scholar 

  43. Venkateswaran, K. et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Evol. Microbiol. 49, 705–724 (1999).

    CAS  Google Scholar 

  44. Tang, Y. J. et al. Invariability of central metabolic flux distribution in Shewanella oneidensis MR-1 under environmental or genetic perturbations. Biotechnol. Progr. 25, 1254–1259 (2009).

    CAS  Google Scholar 

  45. Lovley, D., Phillips, E. & Lonergan, D. Hydrogen and formate oxidation coupled to dissimilatory reduction of iron or manganese by Alteromonas putrefaciens. Appl. Environ. Microbiol. 55, 700–706 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Feng, X., Xu, Y., Chen, Y. & Tang, Y. J. Integrating flux balance analysis into kinetic models to decipher the dynamic metabolism of Shewanella oneidensis MR-1. PLoS Comput. Biol. 8, e1002376–12 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Ishiki, K. & Shiigi, H. Kinetics of intracellular electron generation in Shewanella oneidensis MR-1. Anal. Chem. 91, 14401–14406.

  48. Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Veit, A., Polen, T. & Wendisch, V. F. Global gene expression analysis of glucose overflow metabolism in Escherichia coli and reduction of aerobic acetate formation. Appl. Microbiol. Biotechnol. 74, 406–421 (2006).

    PubMed  Google Scholar 

  50. Zhu, J., Sánchez, A., Bennett, G. N. & San, K.-Y. Manipulating respiratory levels in Escherichia coli for aerobic formation of reduced chemical products. Metab. Eng. 13, 704–712 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Joshi, K., Kane, A. L., Kotloski, N. J., Gralnick, J. A. & Bond, D. R. Preventing hydrogen disposal increases electrode utilization efficiency by Shewanella oneidensis. Front. Energy Res. 7, 95 (2019).

    Google Scholar 

  52. Yang, Y. et al. Enhancing bidirectional electron transfer of Shewanella oneidensis by a synthetic flavin pathway. ACS Synth. Biol. 4, 815–823 (2015).

    CAS  PubMed  Google Scholar 

  53. Choi, D. et al. Metabolically engineered glucose-utilizing Shewanella strains under anaerobic conditions. Bioresource Technol. 154, 59–66 (2014).

    CAS  Google Scholar 

  54. Jensen, H. M. et al. Engineering of a synthetic electron conduit in living cells. Proc. Natl Acad. Sci. USA 107, 19213–19218 (2010).

    CAS  PubMed  Google Scholar 

  55. Jensen, H. M., TerAvest, M. A., Kokish, M. G. & Ajo-Franklin, C. M. CymA and exogenous flavins improve extracellular electron transfer and couple it to cell growth in Mtr-expressing Escherichia coli. ACS Synth. Biol. 5, 679–688 (2016).

    CAS  PubMed  Google Scholar 

  56. Long, C. P., Gonzalez, J. E., Cipolla, R. M. & Antoniewicz, M. R. Metabolism of the fast-growing bacterium Vibrio natriegens elucidated by 13C metabolic flux analysis. Metab. Eng. 44, 191–197 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hunt, K., Flynn, J., Naranjo, B., Shikhare, I. & Gralnick, J. Substrate-level phosphorylation is the primary source of energy conservation during anaerobic respiration of Shewanella oneidensis strain MR-1. J. Bacteriol. 192, 3345–3351 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank G. Bora, J. Imbrogno, M. Chwatko and J. Wagner for their experimental assistance. S. oneidensis knockouts were a generous gift from J. Gralnick. A.J.G. was supported through a National Science Foundation Graduate Research Fellowship (Program Award no. DGE-1610403). J.K. was supported through the Welch Foundation (Grant H-F-0001) during the Welch Summer Scholars Program. We gratefully acknowledge the use of facilities within the core microscopy lab of the Institute for Cellular and Molecular Biology, University of Texas at Austin. H. Alper is thanked for the use of a BioLector Pro. The research reported in this publication was supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award no. R35GM133640. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. Additional research support was provided by the Welch Foundation (Grants F-1929 and F-1904) and by the National Science Foundation through the Center for Dynamics and Control of Materials—an NSF Materials Research Science and Engineering Center under Cooperative Agreement DMR- 1720595. NMR spectra were collected on a Bruker Avance III 500 funded by the NIH (Award 1 S10 OD021508-01) and a Bruker Avance III HD 400 funded by the NSF (Award CHE 1626211).

Author information

Authors and Affiliations

Authors

Contributions

G.F., A.J.G., N.A.L. and B.K.K. designed the research; G.F., A.J.G. and J.K. performed the research; N.A.L. contributed new reagents and analytic tools; G.F., A.J.G., N.A.L. and B.K.K. analysed the data and wrote the paper.

Corresponding author

Correspondence to Benjamin K. Keitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information containing a description of the Materials and Methods, Tables 1–5 and Figs. 1–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, G., Graham, A.J., Kolli, J. et al. Aerobic radical polymerization mediated by microbial metabolism. Nat. Chem. 12, 638–646 (2020). https://doi.org/10.1038/s41557-020-0460-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0460-1

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research