Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution


There are many open questions regarding the hydration of solvent-exposed non-polar tracts and pockets in proteins. Although water is predicted to de-wet purely repulsive surfaces and evacuate crevices, the extent of de-wetting is unclear when ubiquitous van der Waals interactions are in play. The structural simplicity of synthetic supramolecular hosts imbues them with considerable potential to address this issue. To this end, here we detail a combination of densimetry and molecular dynamics simulations of three cavitands, coupled with calorimetric studies of their complexes with short-chain carboxylates. Our results reveal the range of wettability possible within the ostensibly identical cavitand pockets—which differ only in the presence and/or position of the methyl groups that encircle the portal to their non-polar pockets. The results demonstrate the ability of macrocycles to template water cavitation within their binding sites and show how the orientation of methyl groups can trigger the drying of non-polar pockets in liquid water, which suggests new avenues to control guest complexation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Chemical structures and illustrations of the deep-cavity cavitand hosts examined.
Fig. 2: Determination of cavitand volumes by measurement of densities of hosts in aqueous solution.
Fig. 3: Molecular simulation prediction of cavitand pocket hydration numbers and volumes.
Fig. 4: Molecular simulation prediction of cavitand pocket drying thermodynamics.

Data availability

The results that appear in Figs. 24 are provided in Source Data Microsoft Excel spreadsheets linked in the HTML version of the article. Data for Supplementary Figs. 16, 18 and 19 are provided in a Microsoft Excel spreadsheet in the Supplementary Data. In addition, we provide GROMACS topology and Gromos87 files for hosts 13 in a .zip file in the Supplementary Data. Additional information supporting the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Stillinger, F. H. Structure in aqueous solutions of nonpolar solutes from the standpoint of scaled-particle theory. J. Soln Chem. 2, 141–158 (1973).

    CAS  Article  Google Scholar 

  2. 2.

    Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005).

    CAS  PubMed  Article  Google Scholar 

  3. 3.

    Ashbaugh, H. S. & Pratt, L. R. Colloquium: scaled particle theory and the length scales of hydrophobicity. Rev. Mod. Phys. 78, 159–178 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Rasaiah, J. C., Garde, S. & Hummer, G. Water in nonpolar confinement: from nanotubes to proteins and beyond. Ann. Rev. Phys. Chem. 59, 713–740 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Collins, M. D., Hummer, G., Quillin, M. L., Matthews, B. W. & Gruner, S. M. Cooperative water filling of a nonpolar protein cavity observed by high-pressure crystallography and simulation. Proc. Natl Acad. Sci. USA 102, 16668–16671 (2005).

    CAS  PubMed  Article  Google Scholar 

  6. 6.

    Qvist, J., Davidovic, M., Hamelberg, D. & Halle, B. A dry ligand-binding cavity in a solvated protein. Proc. Natl Acad. Sci. USA 105, 6296–6301 (2008).

    CAS  PubMed  Article  Google Scholar 

  7. 7.

    Hummer, G., Rasaiah, J. C. & Noworyta, J. P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414, 188–190 (2001).

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Huang, D. M. & Chandler, D. The hydrophobic effect and the influence of solute–solvent attractions. J. Phys. Chem. B 106, 2047–2053 (2002).

    CAS  Article  Google Scholar 

  9. 9.

    Ben-Amotz, D. Water-mediated hydrophobic interactions. Ann. Rev. Phys. Chem. 67, 617–638 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Li, I. T. S. & Walker, G. C. Signature of hydrophobic hydration in a single polymer. Proc. Natl Acad. Sci. USA 108, 16527–16532 (2011).

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Davis, J. G., Gierszal, K. P., Wang, P. & Ben-Amotz, D. Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012).

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Wu, X. G., Lu, W. J., Streacker, L. M., Ashbaugh, H. S. & Ben-Amotz, D. Temperature-dependent hydrophobic crossover length scale and water tetrahedral order. J. Phys. Chem. Lett. 9, 1012–1017 (2018).

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Collins, M. D., Quillin, M. L., Hummer, G., Matthews, B. W. & Gruner, S. M. Structural rigidity of a large cavity-containing protein revealed by high-pressure crystallography. J. Mol. Biol. 367, 752–763 (2007).

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Yin, H., Feng, G. G., Clore, G. M., Hummer, G. & Rasaiah, J. C. Water in the polar and nonpolar cavities of the protein interleukin-1β. J. Phys. Chem. B 114, 16290–16297 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Patel, A. J. et al. Sitting at the edge: how biomolecules use hydrophobicity to tune their interactions and function. J. Phys. Chem. B 116, 2498–2503 (2012).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Ernst, J. A., Clubb, R. T., Zhou, H. X., Gronenborn, A. M. & Clore, G. M. Demonstration of positionally disordered water within a protein hydrophobic cavity by NMR. Science 267, 1813–1817 (1995).

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Finzel, B. C. et al. Crystal-structure of recombinant human interleukin-1-beta at 2.0-Å resolution. J. Mol. Biol. 209, 779–791 (1989).

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Snyder, P. W. et al. Mechanism of the hydrophobic effect in the biomolecular recognition of arylsulfonamides by carbonic anhydrase. Proc. Natl Acad. Sci. USA 108, 17889–17894 (2011).

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Myslinski, J. M., DeLorbe, J. E., Clements, J. H. & Martin, S. F. Protein–ligand interactions: thermodynamic effects associated with increasing nonpolar surface area. J. Am. Chem. Soc. 133, 18518–18521 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Setny, P., Baron, R. & McCammon, J. A. How can hydrophobic association be enthalpy driven? J. Chem. Theory Comput. 6, 2866–2871 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. 21.

    Biedermann, F., Vendruscolo, M., Scherman, O. A., De Simone, A. & Nau, W. M. Cucurbit[8]uril and blue-box: high-energy water release overwhelms electrostatic interactions. J. Am. Chem. Soc. 135, 14879–14888 (2013).

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    Biedermann, F., Nau, W. M. & Schneider, H. J. The hydrophobic effect revisited—studies with supramolecular complexes imply high-energy water as a noncovalent driving force. Angew. Chem. Int. Ed. 53, 11158–11171 (2014).

    CAS  Article  Google Scholar 

  23. 23.

    Hummer, G. Molecular binding: under water’s influence. Nat. Chem. 2, 906–907 (2010).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  24. 24.

    Giri, N. et al. Liquids with permanent porosity. Nature 527, 216–220 (2015).

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Sullivan, M. R., Sokkalingam, P., Nguyen, T., Donahue, J. P. & Gibb, B. C. Binding of carboxylate and trimethylammonium salts to octa-acid and TEMOA deep-cavity cavitands. J. Comp. Aided Mol. Des. 31, 21–28 (2017).

    CAS  Article  Google Scholar 

  26. 26.

    Gibb, C. L. D. & Gibb, B. C. Well-defined, organic nanoenvironments in water: the hydrophobic effect drives a capsular assembly. J. Am. Chem. Soc. 126, 11408–11409 (2004).

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Liu, S. M., Whisenhunt-Ioup, S. E., Gibb, C. L. D. & Gibb, B. C. An improved synthesis of ‘octa-acid’ deep-cavity cavitand. Supramol. Chem. 23, 480–485 (2011).

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  28. 28.

    Gan, H. Y., Benjamin, C. J. & Gibb, B. C. Nonmonotonic assembly of a deep-cavity cavitand. J. Am. Chem. Soc. 133, 4770–4773 (2011).

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Gan, H. Y. & Gibb, B. C. Guest-mediated switching of the assembly state of a water-soluble deep-cavity cavitand. Chem. Commun. 49, 1395–1397 (2013).

    CAS  Article  Google Scholar 

  30. 30.

    Jordan, J. H. & Gibb, B. C. Molecular containers assembled through the hydrophobic effect. Chem. Soc. Rev. 44, 547–585 (2015).

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Gibb, C. L. D. & Gibb, B. C. Binding of cyclic carboxylates to octa-acid deep-cavity cavitand. J. Comp. Aided Mol. Des. 28, 319–325 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Gibb, C. L. D. & Gibb, B. C. Anion binding to hydrophobic concavity is central to the salting-in effects of Hofmeister chaotropes. J. Am. Chem. Soc. 133, 7344–7347 (2011).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  33. 33.

    Carnegie, R. S., Gibb, C. L. D. & Gibb, B. C. Anion complexation and the Hofmeister effect. Angew. Chem. Int. Ed. 53, 11498–11500 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Sokkalingam, P., Shraberg, J., Rick, S. W. & Gibb, B. C. Binding hydrated anions with hydrophobic pockets. J. Am. Chem. Soc. 138, 48–51 (2016).

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Sullivan, M. R., Yao, W., Tang, D., Ashbaugh, H. S. & Gibb, B. C. The thermodynamics of anion complexation to nonpolar pockets. J. Phys. Chem. B 122, 1702–1713 (2018).

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Hedwig, G. R. & Hinz, H. J. Group additivity schemes for the calculation of the partial molar heat capacities and volumes of unfolded proteins in aqueous solution. Biophys. Chem. 100, 239–260 (2003).

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Ashbaugh, H. S. Solvent cavitation under solvophobic confinement. J. Chem. Phys. 139, 064702 (2013).

    PubMed  Article  CAS  Google Scholar 

  38. 38.

    Cremer, P. S., Flood, A. H., Gibb, B. C. & Mobley, D. L. Collaborative routes to clarifying the murky waters of aqueous supramolecular chemistry. Nat. Chem. 10, 8–16 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Cao, L. P. et al. Cucurbit[7]urilguest pair with an attomolar dissociation constant. Angew. Chem. Int. Ed. 53, 988–993 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Assaf, K. I. & Nau, W. M. Cucurbiturils: from synthesis to high-affinity binding and catalysis. Chem. Soc. Rev. 44, 394–418 (2015).

    CAS  PubMed  Article  Google Scholar 

  41. 41.

    Hillyer, M. B. & Gibb, B. C. Molecular shape and hydrophobic effect. Ann. Rev. Phys. Chem. 67, 307–329 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25 (2015).

    Article  Google Scholar 

  43. 43.

    Horn, H. W. et al. Development of an improved four-site water model for biomolecular simulations: TIP4P-Ew. J. Chem. Phys. 120, 9665–9678 (2004).

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Wang, J. M., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A. Development and testing of a general amber force field. J. Comput. Chem. 25, 1157–1174 (2004).

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Jakalian, A., Bush, B. L., Jack, D. B. & Bayly, C. I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J. Comput. Chem. 21, 132–146 (2000).

    CAS  Article  Google Scholar 

  46. 46.

    Ewell, J., Gibb, B. C. & Rick, S. W. Water inside a hydrophobic cavitand molecule. J. Phys. Chem. B 112, 10272–10279 (2008).

    CAS  PubMed  Article  Google Scholar 

  47. 47.

    Darden, T., York, D. & Pedersen, L. Particle mesh Ewald—An N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).

    CAS  Article  Google Scholar 

  48. 48.

    Nosé, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  Google Scholar 

  49. 49.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Article  Google Scholar 

  50. 50.

    Parrinello, M. & Rahman, A. Polymorphic transitions in single-crystals—a new molecular-dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).

    CAS  Article  Google Scholar 

  51. 51.

    Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997).

    CAS  Article  Google Scholar 

  52. 52.

    Miyamoto, S. & Kollman, P. A. SETTLE—an analytical version of the shake and rattle algorithm for rigid water models. J. Comput. Chem. 13, 952–962 (1992).

    CAS  Article  Google Scholar 

Download references


M.R.S., T.N. and B.C.G. acknowledge the National Institutes of Health (GM125690) and the National Science Foundation (CHE–1807101) for financial support. B.C.G. and H.S.A. gratefully acknowledge the support of the National Science Foundation (CBET–1403167 and CBET–1805167). J.A.L. and D.B.-A. gratefully acknowledge support from the National Science Foundation (CHE–1763581). J.W.B. gratefully acknowledges financial support from the Louisiana Board of Regents. J.W.B., D.T. and H.S.A. thank the Louisiana Optical Network Initiative who provided computational support.

Author information




J.W.B., D.T., M.R.S. and J.A.L. contributed equally to this publication. J.W.B. and D.T. performed the molecular simulations of the cavitands in water. M.R.S. carried out the described guest-binding thermodynamic determinations with ITC. J.A.L. carried out all the described partial molar volume measurements on hosts 13. T.N. synthesized TEXMOA (3). D.B.-A., B.C.G. and H.S.A. conceived and directed the research and contributed to the data analysis and manuscript preparation.

Corresponding author

Correspondence to Henry S. Ashbaugh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–33, Tables 1–8 and discussion.

Supplementary Data 1

Data appearing in Supplementary Figs. 16, 18, 19, 21, 22 and 23.

Supplementary Data 2

Zip file of GROMACS topology (.top) and Gromos87 (.gro) files for simulating hosts 1, 2 and 3 in water. GROMACS is a widely used and distributed research software

Source data

Source Data Fig. 2

Experimental densimetry results for cavitand hosts in aqueous solution.

Source Data Fig. 3

Simulation results characterizing the distribution of host occupation probabilities and partial molar volumes as a function of the host pocket occupancy.

Source Data Fig. 4

Free energies of drying host pockets as a function of temperature determined from molecular simulation.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Barnett, J.W., Sullivan, M.R., Long, J.A. et al. Spontaneous drying of non-polar deep-cavity cavitand pockets in aqueous solution. Nat. Chem. 12, 589–594 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing