Abstract
Chemists have spent over a hundred years trying to make ambient temperature/pressure catalytic systems that can convert atmospheric dinitrogen into ammonia or directly into amines. A handful of successful d-block metal catalysts have been developed in recent years, but even binding of dinitrogen to an f-block metal cation is extremely rare. Here we report f-block complexes that can catalyse the reduction and functionalization of molecular dinitrogen, including the catalytic conversion of molecular dinitrogen to a secondary silylamine. Simple bridging ligands assemble two actinide metal cations into narrow dinuclear metallacycles that can trap the diatom while electrons from an externally bound group 1 metal, and protons or silanes, are added, enabling dinitrogen to be functionalized with modest but catalytic yields of six equivalents of secondary silylamine per molecule at ambient temperature and pressure.

This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout


Data availability
The crystallographic datasets for the structures reported in this study have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1829624 (1U), 1829625 (Ut-thf), 1829626 (1U-diox), 1829627 (1Th-diox), 1829628 (1Th-py), 1829629 (2U), 1829630 (3U), 1939159 (Th(Lt)2(THF)2), 1939157 (Th(LPh)2(py)2), 1939160 ([K(DME)]2[ThCl2(Lt)2]), 1940146 ([K(DME)]2[Th(OMe)2(Lt)2]), 1939874 ([K(DME)4]2[(µ-O){Th(LPh)2}2]), 1939158(U(L)2(THF)2), 1946809 ([K][U(OMe)(L)2]). Copies of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study and detailed experimental procedures and characterization of compounds are available in the Supplementary Information files, and in the depository https://doi.org/10.17632/nm46kr3cnd.1.
Change history
14 May 2020
A Correction to this paper has been published: https://doi.org/10.1038/s41557-020-0485-5
References
Yandulov, D. V. & Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Science 301, 76–78 (2003).
Kuriyama, S. Catalytic formation of ammonia from molecular dinitrogen by use of dinitrogen-bridged dimolybdenum–dinitrogen complexes bearing PNP-pincer ligands: remarkable effect of substituent at PNP-pincer ligand. J. Am. Chem. Soc. 136, 9719–9731 (2014).
Anderson, J. S., Rittle, J. & Peters, J. C. Catalytic conversion of nitrogen to ammonia by an iron model complex. Nature 501, 84–87 (2013).
Siedschlag, R. B. et al. Catalytic silylation of dinitrogen with a dicobalt complex. J. Am. Chem. Soc. 137, 4638–4641 (2015).
Gao, Y., Li, G. & Deng, L. Bis(dinitrogen)cobalt(−1) complexes with NHC ligation: synthesis, characterization, and their dinitrogen functionalization reactions affording side-on bound diazene complexes. J. Am. Chem. Soc. 140, 2239–2250 (2018).
Kendall, A. J., Johnson, S. I., Bullock, R. M. & Mock, M. T. Catalytic silylation of N2 and synthesis of NH3 and N2H4 by net hydrogen atom transfer reactions using a chromium P4 macrocycle. J. Am. Chem. Soc. 140, 2528–2536 (2018).
Doyle, L. R. et al. Catalytic dinitrogen reduction to ammonia at a triamidoamine–titanium complex. Angew. Chem. Int. Ed. 57, 6314–6318 (2018).
Ashida, Y., Arashiba, K., Nakajima, K. & Nishibayashi, Y. Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water. Nature 568, 536–540 (2019).
Schrock, R. R. Catalytic reduction of dinitrogen to ammonia at a single molybdenum center. Acc. Chem. Res. 38, 955–962 (2005).
Nishibayashi, Y. Development of catalytic nitrogen fixation using transition metal–dinitrogen complexes under mild reaction conditions. Dalton Trans. 47, 11290–11297 (2018).
Morello, L., Love, J. B., Patrick, B. O. & Fryzuk, M. D. Carbon-nitrogen bond formation via the reaction of terminal alkynes with a dinuclear side-on dinitrogen complex. J. Am. Chem. Soc. 126, 9480–9481 (2004).
Bernskoetter, W. H., Pool, J. A., Lobkovsky, E. & Chirik, P. J. Dinitrogen functionalization with terminal alkynes, amines, and hydrazines promoted by[(η5-C5Me4H)2Zr]2(μ2,η2,η2-N2): observation of side-on and end-on diazenido complexes in the reduction of N2 to hydrazine. J. Am. Chem. Soc. 127, 7901–7911 (2005).
Akagi, F., Matsuo, T. & Kawaguchi, H. Dinitrogen cleavage by a diniobium tetrahydride complex: formation of a nitride and its conversion into imide species. Angew. Chem. Int. Ed. 46, 8778–8781 (2007).
Knobloch, D. J., Lobkovsky, E. & Chirik, P. J. Dinitrogen cleavage and functionalization by carbon monoxide promoted by a hafnium complex. Nat. Chem. 2, 30–35 (2010).
Ballmann, J., Yeo, A., Patrick, B. O. & Fryzuk, M. D. Carbon–nitrogen bond formation by the reaction of 1,2-cumulenes with a ditantalum complex containing side-on- and end-on-bound dinitrogen. Angew. Chem. Int. Ed. 50, 507–510 (2011).
Ishida, Y. & Kawaguchi, H. Nitrogen atom transfer from a dinitrogen-derived vanadium nitride complex to carbon monoxide and isocyanide. J. Am. Chem. Soc. 136, 16990–16993 (2014).
Nakanishi, Y., Ishida, Y. & Kawaguchi, H. Nitrogen–carbon bond formation by reactions of a titanium–potassium dinitrogen complex with carbon dioxide, tert-butyl isocyanate, and phenylallene. Angew. Chem. Int. Ed. 56, 9193–9197 (2017).
Rodriguez, M. M., Bill, E., Brennessel, W. W. & Holland, P. L. N2 reduction and hydrogenation to ammonia by a molecular iron–potassium complex. Science 334, 780–783 (2011).
McWilliams, S. F. & Holland, P. L. Dinitrogen binding and cleavage by multinuclear iron complexes. Acc. Chem. Res. 48, 2059–2065 (2015).
MacLeod, K. C. et al. Alkali-controlled C–H cleavage or N–C bond formation by N2-derived iron nitrides and imides. J. Am. Chem. Soc. 138, 11185–11191 (2016).
Burford, R. J. & Fryzuk, M. D. Examining the relationship between coordination mode and reactivity of dinitrogen. Nat. Rev. Chem. 1, 0026 (2017).
Ferreira, R. B. et al. Catalytic silylation of dinitrogen by a family of triiron complexes. ACS Catal. 8, 7208–7212 (2018).
Turner, Z. Molecular pnictogen activation by rare earth and actinide complexes. Inorganics 3, 597–635 (2015).
LaPierre, H. S. & Meyer, K. Activation of small molecules by molecular uranium complexes. Prog. Inorg. Chem. 58, 303–416 (2014).
Roussel, P. & Scott, P. Complex of dinitrogen with trivalent uranium. J. Am. Chem. Soc. 120, 1070–1071 (1998).
Odom, A. L., Arnold, P. L. & Cummins, C. C. Heterodinuclear uranium/molybdenum dinitrogen complexes. J. Am. Chem. Soc. 120, 5836–5837 (1998).
Cloke, F. G. N. & Hitchcock, P. B. Reversible binding and reduction of dinitrogen by a uranium(III) pentalene complex. J. Am. Chem. Soc. 124, 9352–9353 (2002).
Evans, W. J., Kozimor, S. A. & Ziller, J. W. A monometallic f element complex of dinitrogen:(C5Me5)3U(η-N2). J. Am. Chem. Soc. 125, 14264–14265 (2003).
Mansell, S. M., Kaltsoyannis, N. & Arnold, P. L. Small molecule activation by uranium tris(aryloxides): experimental and computational studies of binding of N2, coupling of CO, and deoxygenation insertion of CO2 under ambient conditions. J. Am. Chem. Soc. 133, 9036–9051 (2011).
Mansell, S. M., Farnaby, J. H., Germeroth, A. I. & Arnold, P. L. Thermally stable uranium dinitrogen complex with siloxide supporting ligands. Organometallics 32, 4214–4222 (2013).
Lu, E. et al. Back-bonding between an electron-poor, high-oxidation-state metal and poor π-acceptor ligand in a uranium(v)–dinitrogen complex. Nat. Chem. 11, 806–811 (2019).
Mittasch, A. Geschichte der Ammoniaksynthese (Verlag Chemie, 1951).
Falcone, M. et al. The role of bridging ligands in dinitrogen reduction and functionalization by uranium multimetallic complexes. Nat. Chem. 11, 154–160 (2018).
Falcone, M., Chatelain, L., Scopelliti, R., Živković, I. & Mazzanti, M. Nitrogen reduction and functionalization by a multimetallic uranium nitride complex. Nature 547, 332–335 (2017).
Korobkov, I., Gambarotta, S. & Yap, G. P. A. A highly reactive uranium complex supported by the calix[4]tetrapyrrole tetraanion affording dinitrogen cleavage, solvent deoxygenation, and polysilanol depolymerization. Angew. Chem. Int. Ed. 41, 3433–3436 (2002).
Langeslay, R. R., Fieser, M. E., Ziller, J. W., Furche, F. & Evans, W. J. Synthesis, structure, and reactivity of crystalline molecular complexes of the {[C5H3(SiMe3)2]3Th}1− anion containing thorium in the formal +2 oxidation state. Chem. Sci. 6, 517–521 (2015).
Korobkov, I., Gambarotta, S. & Yap, G. P. A. Amide from dinitrogen by in situ cleavage and partial hydrogenation promoted by a transient zero-valent thorium synthon. Angew. Chem. Int. Ed. 42, 4958–4961 (2003).
Wells, J. A. L., Seymour, M. L., Suvova, M. & Arnold, P. L. Dinuclear uranium complexation and manipulation using robust tetraaryloxides. Dalton Trans. 45, 16026–16032 (2016).
Halter, D. P., Heinemann, F. W., Maron, L. & Meyer, K. The role of uranium–arene bonding in H2O reduction catalysis. Nat. Chem 10, 259 (2017).
Evans, W. J., Rego, D. B. & Ziller, J. W. Synthesis, structure, and 15N NMR studies of paramagnetic lanthanide complexes obtained by reduction of dinitrogen. Inorg. Chem. 45, 10790–10798 (2006).
Cordero, B. et al. Covalent radii revisited. Dalton Trans. 2832–2838 (2008).
MacLeod, K. C., McWilliams, S. F., Mercado, B. Q. & Holland, P. L. Stepwise N–H bond formation from N2-derived iron nitride, imide and amide intermediates to ammonia. Chem. Sci. 7, 5736–5746 (2016).
Markus, R., Oliver, S., Dieter, S. & Artur, H. B. Dinuclear diazene iron and ruthenium complexes as models for studying nitrogenase activity. Chem. Eur. J. 7, 5195–5202 (2001).
Chalkley, M. J., Del Castillo, T. J., Matson, B. D., Roddy, J. P. & Peters, J. C. Catalytic N2-to-NH3 conversion by Fe at lower driving force: a proposed role for metallocene-mediated PCET. ACS Cent. Sci. 3, 217–223 (2017).
Zell, T. & Milstein, D. Hydrogenation and dehydrogenation iron pincer catalysts capable of metal–ligand cooperation by aromatization/dearomatization. Acc. Chem. Res. 48, 1979–1994 (2015).
Al-Khafaji, Y., Sun, X., Prior, T. J., Elsegood, M. R. J. & Redshaw, C. Tetraphenolate niobium and tantalum complexes for the ring opening polymerization of ε-caprolactone. Dalton Trans. 44, 12349–12356 (2015).
Tang, L. et al. Highly active catalysts for the ring-opening polymerization of ethylene oxide and propylene oxide based on products of alkylaluminum compounds with bulky tetraphenol ligands. Macromolecules 41, 7306–7315 (2008).
Keane, A. J., Farrell, W. S., Yonke, B. L., Zavalij, P. Y. & Sita, L. R. Metal-mediated production of isocyanates, R3EN=C=O from dinitrogen, carbon dioxide, and R3ECl. Angew. Chem. Int. Ed. 54, 10220–10224 (2015).
Liao, Q., Saffon-Merceron, N. & Mézailles, N. Catalytic dinitrogen reduction at the molybdenum center promoted by a bulky tetradentate phosphine ligand. Angew. Chem. Int. Ed. 53, 14206–14210 (2014).
Liao, Q., Saffon-Merceron, N. & Mézailles, N. N2 reduction into silylamine at tridentate phosphine/Mo center: catalysis and mechanistic study. ACS Catal. 5, 6902–6906 (2015).
Acknowledgements
We thank the University of Edinburgh, the EPSRC, the JSPS and the ERC for funding.
Author information
Authors and Affiliations
Contributions
T.O., F.Y.T.L., R.P.K. and M.L.S. carried out the experiments. L.M. carried out and analysed the DFT calculations. P.L.A. conceived and supervised the project. All authors analysed the data and contributed to the writing of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary methods, Figs.1–41, Tables 1 and 2, refs. 1–6, optimized structures, Cartesian coordinates for the optimized structures, Raman data, UV–vis data and GC-MS data.
Crystallographic data
Crystallographic data for 1U. CCDC reference 1829624.
Crystallographic data
Crystallographic data for 1Ut-thf. CCDC reference 1829625.
Crystallographic data
Crystallographic data for 1U-diox. CCDC reference 1829626.
Crystallographic data
Crystallographic data for 1Th-diox. CCDC reference 1829627.
Crystallographic data
Crystallographic data for 1Th-py. CCDC reference 1829628.
Crystallographic data
Crystallographic data for 2U. CCDC reference 1829629.
Crystallographic data
Crystallographic data for 3U. CCDC reference 1829630.
Crystallographic data
Crystallographic data for Th(Lt)2(THF)2. CCDC reference 1939159.
Crystallographic data
Crystallographic data for Th(LPh)2(py)2. CCDC reference 1939157.
Crystallographic data
Crystallographic data for [K(DME)]2[ThCl2(Lt)2]. CCDC reference 1939160.
Crystallographic data
Crystallographic data for [K(DME)]2[Th(OMe)2(Lt)2]. CCDC reference 1940146.
Crystallographic data
Crystallographic data for [K(DME)4]2[(µ-O){Th(LPh)2}2]. CCDC reference 1939874.
Crystallographic data
Crystallographic data for U(L)2(THF)2. CCDC reference 1939158.
Crystallographic data
Crystallographic data for [K][U(OMe)(L)2]. CCDC reference 1946809.
Rights and permissions
About this article
Cite this article
Arnold, P.L., Ochiai, T., Lam, F.Y.T. et al. Metallacyclic actinide catalysts for dinitrogen conversion to ammonia and secondary amines. Nat. Chem. 12, 654–659 (2020). https://doi.org/10.1038/s41557-020-0457-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41557-020-0457-9