Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures


The generation of molecular chirality in the absence of any molecular chiral inductor is challenging and of fundamental interest for developing a better understanding of homochirality. Here, we show the manipulation of molecular chirality through control of the handedness of helical metal nanostructures (referred to as nanohelices) that are produced by glancing angle deposition onto a substrate that rotates in either a clockwise or counterclockwise direction. A prochiral molecule, 2-anthracenecarboxylic acid, is stereoselectively adsorbed on the metal nanohelices as enantiomorphous anti-head-to-head dimers. The dimers show either Si–Si or Re–Re facial stacking depending on the handedness of the nanohelices, which results in a specific enantiopreference during their photoinduced cyclodimerization: a left-handed nanohelix leads to the formation of (+)-cyclodimers, whereas a right-handed one gives ()-cyclodimers. Density functional theory calculations, in good agreement with the experimental results, point to the enantioselectivity mainly arising from the selective spatial matching of either SiSi or ReRe facial stacking at the helical surface; it may also be influenced by chiroplasmonic effects.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic illustration of the photocyclodimerization of AC mediated by metal NHs.
Fig. 2: Enantioselective photocyclodimerization of AC molecules on one-pitch AgNHs having a P of ~150 nm under irradiation of 365-nm NPL.
Fig. 3: Enantioselective photocyclodimerization of AC molecules on one-pitch CuNHs having a P of ~130 nm under irradiation of 365-nm NPL.
Fig. 4: DFT calculation of the helicity-dependent photochirogenic cyclodimerization of AC.
Fig. 5: DFT calculation of charge transfer between the RH wavelike chiral Ag lattices and the adsorbed complexes.
Fig. 6: Simulation of the optical chirality at the LH-AgNH surface.

Data availability

Data supporting the findings of this study are available within this paper and its Supplementary Information, and are available from the corresponding author upon reasonable request.


  1. 1.

    Baiker, A. Crucial aspects in the design of chirally modified noble metal catalysts for asymmetric hydrogenation of activated ketones. Chem. Soc. Rev. 44, 7449–7464 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Vetica, F., Chauhan, P., Dochain, S. & Enders, D. Asymmetric organocatalytic methods for the synthesis of tetrahydropyrans and their application in total synthesis. Chem. Soc. Rev. 46, 1661–1674 (2017).

    CAS  PubMed  Google Scholar 

  3. 3.

    Xie, J. H., Zhu, S. F. & Zhou, Q. L. Transition metal-catalyzed enantioselective hydrogenation of enamines and imines. Chem. Rev. 111, 1713–1760 (2011).

    CAS  PubMed  Google Scholar 

  4. 4.

    Boersma, A. J., Megens, R. P., Feringa, B. L. & Roelfes, G. DNA-based asymmetric catalysis. Chem. Soc. Rev. 39, 2083–2092 (2010).

    CAS  PubMed  Google Scholar 

  5. 5.

    Yamamoto, T., Akai, Y. & Suginome, M. Chiral palladacycle catalysts generated on a single-handed helical polymer skeleton for asymmetric arylative ring opening of 1,4-epoxy-1,4-dihydronaphthalene. Angew. Chem. Int. Ed. 53, 12785–12788 (2014).

    CAS  Google Scholar 

  6. 6.

    Le Bailly, B. A. F., Byrne, L. & Clayden, J. Refoldable foldamers: global conformational switching by deletion or insertion of a single hydrogen bond. Angew. Chem. Int. Ed. 55, 2132–2136 (2016).

    Google Scholar 

  7. 7.

    Omosun, T. O. et al. Catalytic diversity in self-propagating peptide assemblies. Nat. Chem. 9, 805–809 (2017).

    CAS  PubMed  Google Scholar 

  8. 8.

    Iida, H., Iwahana, S., Mizoguchi, T. & Yashima, E. Main-chain optically active riboflavin polymer for asymmetric catalysis and its vapochromic behavior. J. Am. Chem. Soc. 134, 15103–15113 (2012).

    CAS  PubMed  Google Scholar 

  9. 9.

    Huck, N. P. M., Jager, W. F., de Lange, B. & Feringa, B. L. Dynamic control and amplification of molecular chirality by circular polarized light. Science 273, 1686–1688 (1996).

    CAS  Google Scholar 

  10. 10.

    Feringa, B. L. & Van Delden, R. A. Absolute asymmetric synthesis: the origin, control, and amplification of chirality. Angew. Chem. Int. Ed. 38, 3419–3438 (1999).

    CAS  Google Scholar 

  11. 11.

    Hazen, R. M. & Sholl, D. S. Chiral selection on inorganic crystalline surfaces. Nat. Mater. 2, 367–374 (2003).

    CAS  PubMed  Google Scholar 

  12. 12.

    Schwab, G. M., Rost, F. & Rudolph, L. Optisch asymmetrische Katalyse an Quarzkristallen. Kolloid-Zeitschrift 68, 157–165 (1934).

    CAS  Google Scholar 

  13. 13.

    Schwab, G. M. & Rudolph, L. Katalytische Spaltung von Racematen durch Rechts- und Linksquarz. Naturwissenschaften 20, 363–364 (1932).

    CAS  Google Scholar 

  14. 14.

    Horvath, J. D. & Gellman, A. J. Enantiospecific desorption of R- and S-propylene oxide from a chiral Cu(643) surface. J. Am. Chem. Soc. 123, 7953–7954 (2001).

    CAS  PubMed  Google Scholar 

  15. 15.

    Gellman, A. J. Chiral Surfaces: accomplishments and challenges. ACS Nano 4, 5–10 (2010).

    CAS  PubMed  Google Scholar 

  16. 16.

    Pour, S. O. et al. Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nat. Chem. 7, 591–596 (2015).

    Google Scholar 

  17. 17.

    Morrow, S. M., Bissette, A. J. & Fletcher, S. P. Transmission of chirality through space and across length scales. Nat. Nanotechnol. 12, 410–419 (2017).

    CAS  PubMed  Google Scholar 

  18. 18.

    Robbie, K., Brett, M. J. & Lakhtakia, A. Chiral sculptured thin films. Nature 384, 616 (1996).

    CAS  Google Scholar 

  19. 19.

    Robbie, K., Broer, D. J. & Brett, M. J. Chiral nematic order in liquid crystals imposed by an engineered inorganic nanostructure. Nature 399, 764–766 (1999).

    CAS  Google Scholar 

  20. 20.

    Petit-Garrido, N., Claret, J., Ignes-Mullol, J. & Sagues, F. Stirring competes with chemical induction in chiral selection of soft matter aggregates. Nat. Commun. 3, 1001 (2012).

    PubMed  Google Scholar 

  21. 21.

    Ribo, J. M., Crusats, J., Sagues, F., Claret, J. & Rubires, R. Chiral sign induction by vortices during the formation of mesophases in stirred solutions. Science 292, 2063–2066 (2001).

    CAS  PubMed  Google Scholar 

  22. 22.

    Mark, A. G., Gibbs, J. G., Lee, T. C. & Fischer, P. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12, 802–807 (2013).

    CAS  PubMed  Google Scholar 

  23. 23.

    Larsen, G. K., He, Y. Z., Wang, J. & Zhao, Y. P. Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties. Adv. Opt. Mater. 2, 245–249 (2014).

    Google Scholar 

  24. 24.

    Caridad, J. M. et al. Effective wavelength scaling of and damping in plasmonic helical antennae. ACS Photonics 2, 675–679 (2015).

    CAS  Google Scholar 

  25. 25.

    Hawkeye, M. M. & Brett, M. J. Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J. Vac. Sci. Technol. A 25, 1317–1335 (2007).

    CAS  Google Scholar 

  26. 26.

    Jen, Y. J., Huang, Y. J., Liu, W. C. & Lin, Y. W. Densely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber. Sci. Rep. 7, 39791 (2017).

    CAS  PubMed  Google Scholar 

  27. 27.

    Sobhkhiz, N. & Moshaii, A. Broadband improvement of light absorption properties of α-Fe2O3 thin-film by silver helical nanostructures. Plasmonics 10, 1243–1253 (2015).

    CAS  Google Scholar 

  28. 28.

    Deng, J. H., Fu, J. X., Ng, J. & Huang, Z. F. Tailorable chiroptical activity of metallic nanospiral arrays. Nanoscale 8, 4504–4510 (2016).

    CAS  PubMed  Google Scholar 

  29. 29.

    Liu, J. J., Yang, L. & Huang, Z. F. Chiroptically active plasmonic nanoparticles having hidden helicity and reversible aqueous solvent effect on chiroptical activity. Small 12, 5902–5909 (2016).

    CAS  PubMed  Google Scholar 

  30. 30.

    Liu, J. J., Yang, L., Zhang, H., Wang, J. F. & Huang, Z. F. Ultraviolet–visible chiroptical activity of aluminum nanostructures. Small 13, 1701112 (2017).

    Google Scholar 

  31. 31.

    Gibbs, J. G. et al. Nanohelices by shadow growth. Nanoscale 6, 9457–9466 (2014).

    CAS  PubMed  Google Scholar 

  32. 32.

    Jeong, H. H., Mark, A. G. & Fischer, P. Magnesium plasmonics for UV applications and chiral sensing. Chem. Commun. 52, 12179–12182 (2016).

    CAS  Google Scholar 

  33. 33.

    Bai, F. et al. Two chiroptical modes of silver nanospirals. Nanotechnology 27, 115703 (2016).

    PubMed  Google Scholar 

  34. 34.

    Ke, C. F. et al. Catalytic enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by a non-sensitizing chiral metallosupramolecular host. Angew. Chem. Int. Ed. 48, 6675–6677 (2009).

    CAS  Google Scholar 

  35. 35.

    Yang, C. & Inoue, Y. Supramolecular photochirogenesis. Chem. Soc. Rev. 43, 4123–4143 (2014).

    CAS  PubMed  Google Scholar 

  36. 36.

    Kawanami, Y. et al. Supramolecular photochirogenesis with a higher-order complex: highly accelerated exclusively head-to-head photocyclodimerization of 2-anthracenecarboxylic acid via 2:2 complexation with prolinol. J. Am. Chem. Soc. 138, 12187–12201 (2016).

    CAS  PubMed  Google Scholar 

  37. 37.

    Wang, Q. et al. Wavelength-controlled supramolecular photocyclodimerization of anthracenecarboxylate mediated by γ-cyclodextrins. Chem. Commun. 47, 6849–6851 (2011).

    CAS  Google Scholar 

  38. 38.

    Yang, C., Nakamura, A., Wada, T. & Inoue, Y. Enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by γ-cyclodextrins with a flexible or rigid cap. Org. Lett. 8, 3005–3008 (2006).

    CAS  PubMed  Google Scholar 

  39. 39.

    Dawn, A., Fujita, N., Haraguchi, S., Sada, K. & Shinkai, S. An organogel system can control the stereochemical course of anthracene photodimerization. Chem. Commun. 16, 2100–2102 (2009).

    Google Scholar 

  40. 40.

    Ishida, Y. et al. Two-component liquid crystals as chiral reaction media: highly enantioselective photodimerization of an anthracene derivative driven by the ordered microenvironment. Angew. Chem. Int. Ed. 47, 8241–8245 (2008).

    CAS  Google Scholar 

  41. 41.

    Yang, C. et al. A remarkable stereoselectivity switching upon solid-state versus solution-phase enantiodifferentiating photocyclodimerization of 2-anthracenecarboxylic acid mediated by native and 3,6-anhydro-γ-cyclodextrins. Tetrahedron Lett. 48, 4357–4360 (2007).

    CAS  Google Scholar 

  42. 42.

    Schaferling, M., Dregely, D., Hentschel, M. & Giessen, H. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2, 031010 (2012).

    Google Scholar 

  43. 43.

    Birks, J. B. Photophysics of Aromatic Molecules (Wiley, 1970).

  44. 44.

    Shoeib, T., Rodriquez, C. F., Siu, K. W. M. & Hopkinson, A. C. A comparison of copper(i) and silver(i) complexes of glycine, diglycine and triglycine. Phys. Chem. Chem. Phys. 3, 853–861 (2001).

    CAS  Google Scholar 

  45. 45.

    Herron, J. A., Scaranto, J., Ferrin, P., Li, S. & Mavrikakis, M. Trends in formic acid decomposition on model transition metal surfaces: a density functional theory study. ACS Catal. 4, 4434–4445 (2014).

    CAS  Google Scholar 

  46. 46.

    Wakai, A., Fukasawa, H., Yang, C., Mori, T. & Inoue, Y. Theoretical and experimental investigations of circular dichroism and absolute configuration determination of chiral anthracene photodimers. J. Am. Chem. Soc. 134, 4990–4997 (2012).

    CAS  PubMed  Google Scholar 

  47. 47.

    Nakamura, A. & Inoue, Y. Supramolecular catalysis of the enantiodifferentiating [4 + 4] photocyclodimerization of 2-anthracenecarboxylate by γ-cyclodextrin. J. Am. Chem. Soc. 125, 966–972 (2003).

    CAS  PubMed  Google Scholar 

  48. 48.

    Ernst, K. H. Molecular chirality in surface science. Surf. Sci. 613, 1–5 (2013).

    CAS  Google Scholar 

  49. 49.

    Persson, I. & Nilsson, K. B. Coordination chemistry of the solvated silver(i) ion in the oxygen donor solvents water, dimethyl sulfoxide, and N,N′-dimethylpropyleneurea. Inorg. Chem. 45, 7428–7434 (2006).

    CAS  PubMed  Google Scholar 

  50. 50.

    Tang, Y. Q. & Cohen, A. E. Optical chirality and its interaction with matter. Phys. Rev. Lett. 104, 163901 (2010).

    PubMed  Google Scholar 

  51. 51.

    Tang, Y. Q. & Cohen, A. E. Enhanced enantioselectivity in excitation of chiral molecules by superchiral light. Science 332, 333–336 (2011).

    CAS  PubMed  Google Scholar 

  52. 52.

    Inoue, Y. Asymmetric photochemical reactions in solution. Chem. Rev. 92, 741–770 (1992).

    CAS  Google Scholar 

Download references


The authors thank U. Mirsaidov and P. Nandi for technical support with HRTEM (National University of Singapore), G. Fu (Xiamen University, China) and Y. Yang (Soochow University, China) for discussions, H. Zhang (Chinese University of Hong Kong) for technical support with TEM, W. Wu (IAM, HKBU) for technical support with XRD and XPS, and financial support from NSFC/91856127/21871194/21971169/21473149/21572142/21372165, the National Key Research and Development Program of China (No. 2017YFA0505903), GRF/12200118, FRG2/17-18/058 (HKBU), FRG2/16-17/013 (HKBU) and HKBU8/CRF/11E (GLAD). G.J.X. and Y.G.W. acknowledge financial support from SUSTech and computational resource support from the Center for Computational Science and Engineering (SUSTech). C.Y. thanks the Comprehensive Training Platform of the Specialized Laboratory, College of Chemistry for financial support and P. Wu of the Analytical & Testing Center, Sichuan University, for analytical support.

Author information




Z.F.H. and C.Y. conceived and designed the study; J.J.L. performed GLAD and material characterization; X.Q.W. and W.H.W performed photocyclodimerization and product analysis; G.J.X. and Y.G.W. performed theoretical simulations of AC photocyclodimerization; J.H.D. and P.S. performed the numerical simulation of optical chirality; Z.F.H., C.Y., Y.G.W. and J.J.C. composed the manuscript. All the authors reviewed and approved the manuscript.

Corresponding authors

Correspondence to Cheng Yang or Yang-Gang Wang or Zhifeng Huang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Characterization data, computational data, Supplementary Tables 1–3, Figs. 1–23 and refs. 1–9.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Liu, J., Xia, GJ. et al. Enantioselective photoinduced cyclodimerization of a prochiral anthracene derivative adsorbed on helical metal nanostructures. Nat. Chem. 12, 551–559 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing