Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Total synthesis of terpenes via palladium-catalysed cyclization strategy


Nature’s synthetic plans to construct molecules have been developed over millions of years of evolution and frequently prove to be among the most sophisticated. Mimicking nature’s route can be a direct and feasible way for synthetic organic chemists to construct complicated molecules. However, lacking nature’s ability to manipulate enzymes often prevents us from reproducing the same route. Modifying nature’s approaches can provide a simpler synthetic alternative to access complex structural target molecules. Here we report a strategy that simplifies the synthesis of terpenes by inverting the order of nature’s two-phase biosynthesis route. We first unite simple molecules into a polyfunctionalized linear polyenyne, with all the desired carbons and oxygens in the targeted places. This compound then undergoes polyenyne cycloisomerization, in the presence of all the functional groups, to give polyoxidized terpenes. The key reaction is a palladium-catalysed polyenyne cycloisomerization that not only tolerates the presence of all of the oxygen functionalities, but also is facilitated by them.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Biosynthetic and biomimetic strategies of terpene syntheses from linear precursors.
Fig. 2: Application of Pd-catalysed cyclization strategy in the synthesis of tremulanes.
Fig. 3: Pd-catalysed polyenyne cycloisomerization as a potential tool for the synthesis of terpenes.
Fig. 4: Synthetic sequence and conditions of total synthesis of conocenolide C, 10-acetoxy-conocenolide C and conocenolide E using the Pd-catalysed cyclization strategy.
Fig. 5: Synthetic sequence and conditions for the construction of (+)-10,11,12-trihydroxytremulenone 26 and the 5–8 fused ring through a key acyl radical cyclization as our second stage of cyclization.

Data availability

The data supporting the finding of this study are available in this article and the Supplementary Information.


  1. 1.

    Breitmaier, E. Terpenes: Flavors, Fragrances, Pharmaca, Pheromones (Wiley, 2006).

  2. 2.

    Davis, E. M. & Croteau, R. Cyclization enzymes in the biosynthesis of monoterpenes, sesquiterpenes and diterpenes. Top. Curr. Chem. 209, 53–95 (2000).

    CAS  Article  Google Scholar 

  3. 3.

    Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995).

  4. 4.

    Razzak, M. & De Brabander, J. K. Lessons and revelations from biomimetic syntheses. Nat. Chem. Biol. 7, 865–875 (2011).

    CAS  Article  Google Scholar 

  5. 5.

    Yoder, R. A. & Johnston, J. N. A case study in biomimetic total synthesis: polyolefin carbocyclizations to terpenes and steroids. Chem. Rev. 105, 4730–4756 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    Ishihara, K., Ishibashi, H. & Yamamoto, H. Enantioselective biomimetic cyclization of homo(polyprenyl)arenes. A new entry to (+)-podpcarpa-8,11,13-triene diterpenoids and (−)-tetracyclic polyprenoid of sedimentary origin. J. Am. Chem. Soc. 123, 1505–1506 (2001).

    CAS  Article  Google Scholar 

  7. 7.

    Jeker, O. F., Kravina, A. G. & Carreira, E. M. Total synthesis of (+)-asperolide C by iridium-catalyzed enantioselective polyene cyclization. Angew. Chem. Int. Ed. 52, 12166–12169 (2013).

    CAS  Article  Google Scholar 

  8. 8.

    Pronin, S. V. & Shenvi, R. A. Synthesis of highly strained terpenes by non-stop tail-to-head polycyclization. Nat. Chem. 4, 915–920 (2012).

    CAS  Article  Google Scholar 

  9. 9.

    Zhang, Q. & Tiefenbacher, K. Terpene cyclization catalysed inside a self-assembled cavity. Nat. Chem. 7, 197–202 (2015).

    CAS  Article  Google Scholar 

  10. 10.

    Chen, K. & Baran, P. S. Total synthesis of eudesmane terpenes by site-selective C–H oxidations. Nature 459, 824–828 (2009).

    CAS  Article  Google Scholar 

  11. 11.

    Hendrickson, J. B. Systematic characterization of structures and reactions for use in organic synthesis. J. Am. Chem. Soc. 93, 6847–6854 (1971).

    CAS  Article  Google Scholar 

  12. 12.

    Burns, N. Z., Baran, P. S. & Hoffmann, R. W. Redox economy in organic synthesis. Angew. Chem. Int. Ed. 48, 2854–2867 (2009).

    CAS  Article  Google Scholar 

  13. 13.

    Ayer, W. A. & Cruz, E. R. The tremulanes, a new group of sesquiterpenes from the aspen rotting fungus Phellinus tremulae. J. Org. Chem. 58, 7529–7534 (1993).

    CAS  Article  Google Scholar 

  14. 14.

    Zhou, Z.-Y., Tang, J.-G., Wang, F., Dong, Z.-J. & Liu, J.-K. Sesquiterpenes and aliphatic diketones from cultures of the basidiomycete Conocybe siliginea. J. Nat. Prod. 71, 1423–1426 (2008).

    CAS  Article  Google Scholar 

  15. 15.

    Yang, X.-Y. et al. Five new 5,6-seco-tremulane sesquiterpenoids from the basidiomycete Conocybe siliginea. Nat. Prod. Bioprospect. 3, 48–51 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Davies, H. M. L. & Doan, B. D. Total synthesis of (+/−)-tremulenolide A and (+/−)-tremulenediol A via a stereoselective cyclopropanation/cope rearrangement annulation strategy. J. Org. Chem. 63, 657–660 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    Ashfeld, B. L. & Martin, S. F. Enantioselective syntheses of tremulenediol A and tremulenolide A. Org. Lett. 7, 4535–4537 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    Brill, Z. G., Grover, H. K. & Maimone, T. J. Enantioselective synthesis of an ophiobolin sesterterpene via a programmed radical cascade. Science 352, 1078–1082 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Murphy, S. K., Zeng, M. & Herzon, S. B. A modular and enantioselective synthesis of the pleuromutilin antibiotics. Science 356, 956–959 (2017).

    CAS  Article  Google Scholar 

  20. 20.

    Molawi, K., Delpont, N. & Echavarren, A. M. Enantioselective synthesis of (−)-englerins A and B. Angew. Chem. Int. Ed. 49, 3517–3519 (2010).

    CAS  Article  Google Scholar 

  21. 21.

    Lee, Y., Rochette, E. M., Kim, J. & Chen, D. Y. K. An asymmetric pathway to dendrobine by a transition-metal-catalyzed cascade process. Angew. Chem. Int. Ed. 56, 12250–12254 (2017).

    CAS  Article  Google Scholar 

  22. 22.

    Furstner, A. Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chem. Soc. Rev. 38, 3208–3221 (2009).

    Article  Google Scholar 

  23. 23.

    Dorel, R. & Echavarren, A. M. Gold(i)-catalyzed activation of alkynes for the construction of molecular complexity. Chem. Rev. 115, 9028–9072 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Ardkhean, R. et al. Cascade polycyclizations in natural product synthesis. Chem. Soc. Rev. 45, 1557–1569 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Trost, B. M. & Shi, Y. Cycloisomerization for atom economy. Polycycle construction via tandem transition-metal catalyzed electrocyclic processes. J. Am. Chem. Soc. 114, 791–792 (1992).

    CAS  Article  Google Scholar 

  26. 26.

    Trost, B. M. & Shi, Y. Diastereoselective cycloisomerizations of enediynes via palladium catalysis. J. Am. Chem. Soc. 115, 12491–12509 (1993).

    CAS  Article  Google Scholar 

  27. 27.

    Trost, B. M. & Shi, Y. Palladium-catalyzed cyclizations of polyenynes. A palladium zipper. J. Am. Chem. Soc. 115, 9421–9438 (1993).

    CAS  Article  Google Scholar 

  28. 28.

    Dounay, A. B. & Overman, L. E. The asymmetric intramolecular Heck reaction in natural product total synthesis. Chem. Rev. 103, 2945–2963 (2003).

    CAS  Article  Google Scholar 

  29. 29.

    Mekareeya, A. et al. Mechanistic insight into palladium-catalyzed cycloisomerization: a combined experimental and theoretical study. J. Am. Chem. Soc. 139, 10104–10114 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Trost, B. M. & Bartlett, M. J. ProPhenol-catalyzed asymmetric additions by spontaneously assembled dinuclear main group metal complexes. Acc. Chem. Res. 48, 688–701 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    Hughes, G., Kimura, M. & Buchwald, S. L. Catalytic enantioselective conjugate reduction of lactones and lactams. J. Am. Chem. Soc. 125, 11253–11258 (2003).

    CAS  Article  Google Scholar 

  32. 32.

    Just-Baringo, X. & Procter, D. J. Sm(ii)-mediated electron transfer to carboxylic acid derivatives: development of complexity-generating cascades. Acc. Chem. Res. 48, 1263–1275 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    Boger, D. L. & Mathvink, R. J. Acyl radicals: intermolecular and intramolecular alkene addition reactions. J. Org. Chem. 57, 1429–1443 (1992).

    CAS  Article  Google Scholar 

  34. 34.

    Xu, C., Han, A. & Reisman, S. E. An oxidative dearomatization approach to prepare the pentacyclic core of ryanodol. Org. Lett. 20, 3793–3796 (2018).

    CAS  Article  Google Scholar 

Download references


We thank the Tamaki Foundation and Chugai Pharmaceuticals for their generous, partial funding of our programme.

Author information




B.M.T. and C.M. conceived the idea, designed the experiments, analysed the data and prepared the manuscript. C.M. performed the experiments and collected all the data.

Corresponding author

Correspondence to Barry M. Trost.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

General information, detailed experiment procedures, characterization data and spectra of the new products.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Trost, B.M., Min, C. Total synthesis of terpenes via palladium-catalysed cyclization strategy. Nat. Chem. 12, 568–573 (2020).

Download citation


Quick links