Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Modular bismacycles for the selective C–H arylation of phenols and naphthols

Abstract

Given the important role played by 2-hydroxybiaryls in organic, medicinal and materials chemistry, concise methods for the synthesis of this common motif are extremely valuable. In seeking to extend the lexicon of synthetic chemists in this regard, we have developed an expedient and general strategy for the ortho-arylation of phenols and naphthols using readily available boronic acids. Our methodology relies on in situ generation of a uniquely reactive Bi(v) arylating agent from a bench-stable Bi(iii) precursor via telescoped B–to–Bi transmetallation and oxidation. By exploiting reactivity that is orthogonal to conventional metal-catalysed manifolds, diverse aryl and heteroaryl partners can be rapidly coupled to phenols and naphthols under mild conditions. Following arylation, high-yielding recovery of the Bi(iii) precursor allows for its efficient re-use in subsequent reactions. Mechanistic interrogation of each key step of the methodology informs its practical application and provides fundamental insight into the underexploited reactivity of organobismuth compounds.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Occurrence and Bi(v)-mediated synthesis of 2-hydroxybiaryls.
Fig. 2: Synthesis of a universal bismacycle(iii) precursor.
Fig. 3: One-pot, Bi(v)-mediated arylation of phenols and naphthols.
Fig. 4: Bi(v)-mediated arylation enables concise synthesis and diversification of biologically active compounds without substrate prefunctionalization.
Fig. 5: Preliminary mechanistic investigations.

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers 1904059 (1-OTs), 1904060 (2a), 1904061 (2b), 1904062 (2c), 1904063 (2e), 1904064 (2g), 1904065 (2h), 1904066 (2i), 1904069 (2j), 1904067 (2k), 1904068 (2m), 1904070 (2u), 1904071 (2v), 1904072 (9) and 1904073 (50). Copies of the data can be obtained free of charge at www.ccdc.cam.ac.uk/data_request/cif. The authors declare that all other data supporting the findings of this study are available within the paper and its Supplementary information.

References

  1. 1.

    Ibrahim, S. R. M. & Mohamed, G. A. Naphthylisoquinoline alkaloids potential drug leads. Fitoterapia 106, 194–225 (2015).

    CAS  PubMed  Google Scholar 

  2. 2.

    Teponno, R. B., Kusari, S. & Spiteller, M. Recent advances in research on lignans and neolignans. Nat. Prod. Rep. 33, 1044–1092 (2016).

    CAS  PubMed  Google Scholar 

  3. 3.

    Quideau, S., Deffieux, D., Douat-Casassus, C. & Pouysegu, L. Plant polyphenols: chemical properties, biological activities, and synthesis. Angew. Chem. Int. Ed. 50, 586–621 (2011).

    CAS  Google Scholar 

  4. 4.

    Stockert, A. L. & Hill, M. in Bioactive Components, Diet and Medical Treatment in Cancer Prevention (eds Waly, M. & Rahman, M.) Ch. 2, 25–50 (Springer, 2018).

  5. 5.

    Parmar, D., Sugiono, E., Raja, S. & Rueping, M. Complete field guide to asymmetric BINOL-phosphate derived Brønsted acid and metal catalysis: history and classification by mode of activation; Brønsted acidity, hydrogen bonding, ion pairing, and metal phosphates. Chem. Rev. 114, 9047–9153 (2014).

    CAS  PubMed  Google Scholar 

  6. 6.

    Reid, J. P. & Goodman, J. M. Selecting chiral BINOL‐derived phosphoric acid catalysts: general model to identify steric features essential for enantioselectivity. Chem. Eur. J. 23, 14248–14260 (2017).

    CAS  PubMed  Google Scholar 

  7. 7.

    Cramer, J., Sager, C. P. & Ernst, B. Hydroxyl groups in synthetic and natural-product-derived therapeutics: a perspective on a common functional group. J. Med. Chem. 62, 8915–8930 (2019).

    CAS  Google Scholar 

  8. 8.

    Zhang, H. et al. Molecular determinants of Magnolol targeting both RXRα and PPARγ. PLOS ONE 6, e28253 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Marchais-Oberwinkler, S. et al. New drug-like hydroxyphenylnaphthol steroidomimetics as potent and selective 17β-hydroxysteroid dehydrogenase type 1 inhibitors for the treatment of estrogen-dependent diseases. J. Med. Chem. 54, 534–547 (2010).

    PubMed  Google Scholar 

  10. 10.

    Gross, K. C. & Seybold, P. G. Substituent effects on the physical properties and pK a of phenol. Int. J. Quantum Chem. 85, 569–579 (2001).

    CAS  Google Scholar 

  11. 11.

    Bosmans, V. et al. Probing through-space polar–π interactions in 2,6-diarylphenols. J. Org. Chem. 84, 3632–3637 (2019).

    CAS  PubMed  Google Scholar 

  12. 12.

    Hassan, J., Sévignon, M., Gozzi, C., Schulz, E. & Lemaire, M. Aryl–aryl bond formation one century after the discovery of the Ullmann reaction. Chem. Rev. 102, 1359–1470 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Huang, Z. & Lumb, J.-P. Phenol-directed C–H functionalization. ACS Catal. 9, 521–555 (2019).

    CAS  Google Scholar 

  14. 14.

    Alberico, D., Scott, M. E. & Lautens, M. Aryl–aryl bond formation by transition-metal-catalyzed direct arylation. Chem. Rev. 107, 174–238 (2007).

    CAS  PubMed  Google Scholar 

  15. 15.

    Zhao, X., Yeung, C. S. & Dong, V. M. Palladium-catalyzed ortho-arylation of O-phenylcarbamates with simple arenes and sodium persulfate. J. Am. Chem. Soc. 132, 5837–5844 (2010).

    CAS  PubMed  Google Scholar 

  16. 16.

    Bedford, R. B., Webster, R. L. & Mitchell, C. J. Palladium-catalysed ortho-arylation of carbamate-protected phenols. Org. Biomol. Chem. 7, 4853–4857 (2009).

    CAS  PubMed  Google Scholar 

  17. 17.

    Bedford, R. B. et al. Palladium-catalyzed ortho-arylation of carbamate-protected estrogens. J. Org. Chem. 81, 3473–3478 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Xiao, B. et al. Pd(ii)-catalyzed C−H activation/aryl–aryl coupling of phenol esters. J. Am. Chem. Soc. 132, 468–469 (2010).

    CAS  PubMed  Google Scholar 

  19. 19.

    Ackermann, L., Diers, E. & Manvar, A. Ruthenium-catalyzed C–H bond arylations of arenes bearing removable directing groups via six-membered ruthenacycles. Org. Lett. 14, 1154–1157 (2012).

    CAS  PubMed  Google Scholar 

  20. 20.

    Gu, S., Chen, C. & Chen, W. Ortho-functionalization of 2-phenoxypyrimidines via palladium-catalyzed C–H bond activation. J. Org. Chem. 74, 7203–7206 (2009).

    CAS  PubMed  Google Scholar 

  21. 21.

    Bedford, R. B. et al. Simple rhodium–chlorophosphine pre-catalysts for the ortho-arylation of phenols. Chem. Commun. 990–992 (2008).

  22. 22.

    Bajracharya, G. B. & Daugulis, O. Direct transition-metal-free intramolecular arylation of phenols. Org. Lett. 10, 4625–4628 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Truong, T. & Daugulis, O. Divergent reaction pathways for phenol arylation by arynes: synthesis of helicenes and 2-arylphenols. Chem. Sci. 4, 531–535 (2013).

    CAS  PubMed  Google Scholar 

  24. 24.

    Bedford, R. B. & Limmert, M. E. Catalytic intermolecular ortho-arylation of phenols. J. Org. Chem. 68, 8669–8682 (2003).

    CAS  PubMed  Google Scholar 

  25. 25.

    Oi, S., Watanabe, S., Fukita, S. & Inoue, Y. Rhodium-HMPT-catalyzed direct ortho-arylation of phenols with aryl bromides. Tetrahedron Lett. 44, 8665–8668 (2003).

    CAS  Google Scholar 

  26. 26.

    Bedford, R. B., Haddow, M. F., Webster, R. L. & Mitchell, C. J. The catalytic ortho-arylation of tyrosine. Org. Biomol. Chem. 7, 3119–3127 (2009).

    CAS  Google Scholar 

  27. 27.

    Barton, D. H. R., Lester, D. J., Motherwell, W. B. & Papoula, M. T. B. Observations on the cleavage of the bismuth–carbon bond in BiV compounds: a new arylation reaction. J. Chem. Soc. Chem. Commun. 246–247 (1980).

  28. 28.

    Barton, D. H. R. et al. Comparative arylation reactions with pentaphenylbismuth and with triphenylbismuth carbonate. J. Chem. Soc. Chem. Commun. 827–829 (1980).

  29. 29.

    Gagnon, A., Dansereau, J. & Le Roch, A. Organobismuth reagents: synthesis, properties and applications in organic synthesis. Synthesis 49, 1707–1745 (2017).

    CAS  Google Scholar 

  30. 30.

    Gagnon, A, Benoit, E. & Le Roch, A. Sci. Synth., Knowl. Updates 4, 2–112 (2018).

  31. 31.

    Suzuki, H. et al. Organobismuth Chemistry 1st edn (Elsevier, 2001).

  32. 32.

    Balsane, K. E., Gund, S. H. & Nagarkar, J. M. Atom economic palladium catalyzed novel approach for arylation of benzothiazole and benzoxazole with triarylbismuth reagents via C-H activation. Catal. Commun. 89, 29–33 (2017).

    CAS  Google Scholar 

  33. 33.

    Fedorov, A. Y. & Finet, J.-P. Synthesis and reactivity of pentavalent biphenyl-2,2′-ylenebismuth derivatives. J. Chem. Soc., Perkin Trans. 1, 3775–3778 (2000).

  34. 34.

    Suzuki, H., Murafuji, T. & Azuma, N. Synthesis and reactions of some new heterocyclic bismuth-(iii) and -(v) compounds. 5,10-Dihydrodibenzo[b,e]bismine and related systems. J. Chem. Soc. Perkin Trans. 1, 1593–1600 (1992).

  35. 35.

    Sakurai, N. & Mukaiyama, T. A new preparative method of aryl sulfonate esters by using cyclic organobismuth reagents. Heterocycles 74, 771–790 (2007).

    CAS  Google Scholar 

  36. 36.

    Murafuji, T. et al. Bismuth heterocycles based on a diphenyl sulfone scaffold: synthesis and substituent effect on the antifungal activity against Saccharomyces cerevisiae. Eur. J. Med. Chem. 46, 519–525 (2011).

    CAS  PubMed  Google Scholar 

  37. 37.

    Murafuji, T., Nagasue, M., Tashiro, Y., Sugihara, Y. & Azuma, N. Structural characteristics of aryloxybismuthanes stabilized by hypervalent bond formation. Synthesis, incorporation of 4-methoxyphenol through hydrogen bonding, and crystal supramolecularity. Organometallics 19, 1003–1007 (2000).

    CAS  Google Scholar 

  38. 38.

    Ohkata, K., Takemoto, S., Ohnishi, M. & Akiba, K. Synthesis and chemical behaviors of 12-substituted dibenz[c,f][1,5]azastibocine and dibenz[c,f][1,5]azabismocine derivatives: evidences of 10-Pn-4 type hypervalent interaction. Tetrahedron Lett. 30, 4841–4844 (1989).

    CAS  Google Scholar 

  39. 39.

    Ikegami, T. & Suzuki, H. A stabilized triarylbismuthane imide: synthesis and first X-ray structure analysis. Organometallics 17, 1013–1017 (1998).

    CAS  Google Scholar 

  40. 40.

    Matano, Y., Begum, S. A., Miyamatsu, T. & Suzuki, H. A new and efficient method for the preparation of bismuthonium and telluronium salts using aryl- and alkenylboronic acids. First observation of the chirality at bismuth in an asymmetrical bismuthonium salt. Organometallics 17, 4332–4334 (1998).

    CAS  Google Scholar 

  41. 41.

    Yoshihiro, M., Takashi, M. & Hitomi, S. Synthesis and reaction of unsymmetrical tetraarylbismuthonium salts. First isolation of bismuthonium salts bearing all different aryl groups. Chem. Lett. 27, 127–128 (1998).

    Google Scholar 

  42. 42.

    Matano, Y., Begum, S. A., Miyamatsu, T. & Suzuki, H. Synthesis and stereochemical behavior of unsymmetrical tetraarylbismuthonium salts. Organometallics 18, 5668–5681 (1999).

    CAS  Google Scholar 

  43. 43.

    Matano, Y., Begum, S. A. & Suzuki, H. A new synthesis of triarylbismuthanes via directed ligand coupling of oxazoline-substituted tetraarylbismuthonium salts: synthesis of polystyrenes bearing the diarylbismuthino group. Synthesis 1081–1085 (2001).

  44. 44.

    Matano, Y. & Imahori, H. A new, efficient method for direct α-alkenylation of β-dicarbonyl compounds and phenols using alkenyltriarylbismuthonium salts. J. Org. Chem. 69, 5505–5508 (2004).

    CAS  PubMed  Google Scholar 

  45. 45.

    Stavila, V., Thurston, J. H., Prieto-Centurión, D. & Whitmire, K. H. A new methodology for synthesis of aryl bismuth compounds: arylation of bismuth(iii) carboxylates by sodium tetraarylborate salts. Organometallics 26, 6864–6866 (2007).

    CAS  Google Scholar 

  46. 46.

    Dostál, L. et al. From stiba- and bismaheteroboroxines to N,C,N-chelated diorganoantimony(iii) and bismuth(iii) cations—an unexpected case of aryl group migration. Inorg. Chem. 54, 6010–6019 (2015).

    PubMed  Google Scholar 

  47. 47.

    Cox, P. A., Leach, A. G., Campbell, A. D. & Lloyd-Jones, G. C. Protodeboronation of heteroaromatic, vinyl, and cyclopropyl boronic acids: pH–rate profiles, autocatalysis, and disproportionation. J. Am. Chem. Soc. 138, 9145–9157 (2016).

    CAS  PubMed  Google Scholar 

  48. 48.

    Cox, P. A. et al. Base-catalyzed aryl-B(OH)2 protodeboronation revisited: from concerted proton transfer to liberation of a transient aryl anion. J. Am. Chem. Soc. 139, 13156–13165 (2017).

    CAS  PubMed  Google Scholar 

  49. 49.

    Kozminskaya, T. K., Nadj, M. M. & Kocheshkov, K. A. The synthesis of organo-bismuth compounds of the type R3Bi by the method of double diazonium salts. Zh. Obshch. Khim. 16, 891–896 (1946).

    CAS  Google Scholar 

  50. 50.

    Matano, Y. et al. Water-soluble non-ionic triarylbismuthanes. First synthesis and properties. J. Chem. Soc., Perkin Trans. 1, 2511–2518 (1998).

  51. 51.

    Hébert, M. et al. Synthesis of highly functionalized triarylbismuthines by functional group manipulation and use in palladium- and copper-catalyzed arylation reactions. J. Org. Chem. 81, 5401–5416 (2016).

    PubMed  Google Scholar 

  52. 52.

    Preda, A. M. et al. Heteroaryl bismuthines: a novel synthetic concept and metalπ heteroarene interactions. Dalton Trans. 46, 8269–8278 (2017).

    CAS  PubMed  Google Scholar 

  53. 53.

    Petiot, P. & Gagnon, A. Palladium‐catalyzed cross‐coupling reaction of functionalized aryl‐ and heteroarylbismuthanes with 2‐halo(or 2‐triflyl)­azines and ‐diazines. Eur. J. Org. Chem. 24, 5282–5289 (2013).

    Google Scholar 

  54. 54.

    Merck and Co. O-Heteroaryl, O-alkylheteroaryl, O-alkenylheteroaryl and O-alkynylheteroarylmacrolides having immunosuppressive activity. US patent US5252732 (1993).

  55. 55.

    Urgin, K. et al. Advanced preparation of functionalized triarylbismuths and triheteroaryl-bismuths: new scope and alternatives. Tetrahedron Lett. 53, 1894–1896 (2012).

    CAS  Google Scholar 

  56. 56.

    Kinzel, T., Zhang, Y. & Buchwald, S. L. A new palladium precatalyst allows for the fast Suzuki−Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acids. J. Am. Chem. Soc. 132, 14073–14075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Chen, L., Sanchez, D. R., Zhang, B. & Carrow, B. P. “Cationic” Suzuki–Miyaura coupling with acutely base-sensitive boronic acids. J. Am. Chem. Soc. 139, 12418–12421 (2017).

    CAS  PubMed  Google Scholar 

  58. 58.

    Babudri, F., Farinola, G. M., Naso, F. & Ragni, R. Fluorinated organic materials for electronic and optoelectronic applications: the role of the fluorine atom. Chem. Commun. 1003–1022 (2007).

  59. 59.

    Fedorov, A., Combes, S. & Finet, J.-P. Influence of the steric hindrance of the aryl group of pentavalent triarylbismuth derivatives in ligand coupling reactions. Tetrahedron 55, 1341–1352 (1999).

    CAS  Google Scholar 

  60. 60.

    Barton, D. H. R. et al. The chemistry of pentavalent organobismuth reagents: Part X. Studies on the phenylation and oxidation of phenols. Tetrahedron 43, 323–332 (1987).

    CAS  Google Scholar 

  61. 61.

    Evano, G., Blanchard, N. & Toumi, M. Copper-mediated coupling reactions and their applications in natural products and designed biomolecules synthesis. Chem. Rev. 108, 3054–3131 (2008).

    CAS  PubMed  Google Scholar 

  62. 62.

    Qiao, J. X. & Lam, P. Y. S. Copper-promoted carbon-heteroatom bond cross-coupling with boronic acids and derivatives. Synthesis 6, 829–856 (2011).

    Google Scholar 

  63. 63.

    Crifar, C., Petiot, P., Ahmad, T. & Gagnon, A. Synthesis of highly functionalized diaryl ethers by copper‐mediated O‐arylation of phenols using trivalent arylbismuth reagents. Chem. Eur. J. 20, 2755–2760 (2014).

    CAS  PubMed  Google Scholar 

  64. 64.

    Barton, D. H. R. et al. Pentavalent organobismuth reagents. Part 2. The phenylation of phenols. J. Chem. Soc. Perkin Trans. 1, 2657–2665 (1985).

  65. 65.

    Hansch, C., Leo, A. & Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chem. Rev. 97, 165–195 (1991).

    Google Scholar 

  66. 66.

    Takahata, Y. & Chong, D. P. Estimation of Hammett sigma constants of substituted benzenes through accurate density-functional calculation of core-electron binding energy shifts. Int. J. Quantum Chem. 103, 509–515 (2005).

    CAS  Google Scholar 

  67. 67.

    Selassie, C. & Verma, R. P. Burger’s Medicinal Chemistry, Drug Discovery, and Development 6th edn, Vol. 1 (John Wiley & Sons, 2003).

  68. 68.

    Sofia, M. J. et al. o-Phenylphenols: potent and orally active leukotriene B4 receptor antagonists. J. Med. Chem. 36, 3978–3981 (1993).

    CAS  PubMed  Google Scholar 

  69. 69.

    Sawyer, J. S. et al. Synthetic and structure/activity studies on acid-substituted 2-arylphenols: discovery of 2-[2-propyl-3-[3-[2-ethyl-4-(4-fluorophenyl)-5-hydroxyphenoxy]-propoxy]phenoxy]benzoic acid, a high-affinity leukotriene B4 receptor antagonist. J. Med. Chem. 38, 4411–4432 (1995).

    CAS  PubMed  Google Scholar 

  70. 70.

    Worm, K., Zhou, Q. J., Stabley, G. J., DeHaven, R. N. & Dolle, R. E. Biaryl cannabinoid mimetics—synthesis and structure–activity relationship. Bioorg. Med. Chem. Lett. 17, 3652–3656 (2007).

    CAS  PubMed  Google Scholar 

  71. 71.

    Zhang, L. et al. Highly regio- and chemoselective oxidative C–H/C–H cross-couplings of anilines and phenols enabled by a co-oxidant-free Rh(i)/Zn(NTf2)2/air catalytic system. ACS Catal. 9, 5358–5364 (2019).

    CAS  Google Scholar 

  72. 72.

    Hu, Z. & Liu, G. Rhodium(iii)‐catalyzed cascade redox‐neutral C–H functionalization and aromatization: synthesis of unsymmetrical ortho‐biphenols. Adv. Synth. Catal. 359, 1643–1648 (2017).

    CAS  Google Scholar 

  73. 73.

    Xiao, B. et al. Synthesis of dibenzofurans via palladium-catalyzed phenol-directed C–H activation/C–O cyclization. J. Am. Chem. Soc. 133, 9250–9253 (2011).

    CAS  PubMed  Google Scholar 

  74. 74.

    Ciana, C.-L., Phipps, R. J., Brandt, J. R., Meyer, F.-M. & Gaunt, M. J. A highly para‐selective copper(ii)‐catalyzed direct arylation of aniline and phenol derivatives. Angew. Chem. Int. Ed. 50, 458–462 (2011).

    CAS  Google Scholar 

  75. 75.

    Ivanova, A. et al. Synthesis, functionalization and biological activity of arylated derivatives of (+)-estrone. Bioorg. Med. Chem. 25, 949–962 (2017).

    Google Scholar 

  76. 76.

    Mewshaw, R. E. et al. ERβ Ligands. 3. Exploiting two binding orientations of the 2-phenylnaphthalene scaffold to achieve ERβ selectivity. J. Med. Chem. 48, 3953–3979 (2005).

    CAS  PubMed  Google Scholar 

  77. 77.

    Marchais-Oberwinkler, S. et al. Substituted 6-phenyl-2-naphthols. Potent and selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1): design, synthesis, biological evaluation, and pharmacokinetics. J. Med. Chem. 51, 4685–4698 (2008).

    CAS  PubMed  Google Scholar 

  78. 78.

    Yin, S.-F., Maruyama, J., Yamashita, T. & Shimada, S. Efficient fixation of carbon dioxide by hypervalent organobismuth oxide, hydroxide, and alkoxide. Angew. Chem. Int. Ed. 47, 6590–6593 (2008).

    CAS  Google Scholar 

  79. 79.

    Qiu, R. et al. Synthesis and structure of binuclear O/S‐bridged organobismuth complexes and their cooperative catalytic effect on CO2 fixation. ChemPlusChem 77, 404–410 (2012).

    CAS  Google Scholar 

  80. 80.

    Carrow, B. P. & Hartwig, J. F. Distinguishing between pathways for transmetalation in Suzuki–Miyaura reactions. J. Am. Chem. Soc. 133, 2116–2119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. 81.

    Lennox, A. J. J. & Lloyd-Jones, G. C. Transmetallation in Suzuk–Miyaura coupling: the fork in the trail. Angew. Chem. Int. Ed. 52, 7362–7370 (2013).

    CAS  Google Scholar 

  82. 82.

    Thomas, A. A. & Denmark, S. E. Pre-transmetalation intermediates in the Suzuki–Miyaura reaction revealed: the missing link. Science 352, 329–332 (2016).

    CAS  PubMed  Google Scholar 

  83. 83.

    Matano, Y. & Nomura, H. Dimeric triarylbismuthane oxide: a novel efficient oxidant for the conversion of alcohols to carbonyl compounds. J. Am. Chem. Soc. 123, 6443–6444 (2001).

    CAS  PubMed  Google Scholar 

  84. 84.

    Tetrahedron Organic Chemistry Series (ed. Finet, J.-P.) Vol. 18, Ch. 2 (Elsevier, 1998).

  85. 85.

    Askari, M. S., Esguerra, K. V. N., Lumb, J.-P. & Ottenwaelder, X. A biomimetic mechanism for the copper-catalyzed aerobic oxygenation of 4-tert-butylphenol. Inorg. Chem. 54, 8665–8672 (2015).

    CAS  PubMed  Google Scholar 

  86. 86.

    Itoh, S. & Fukuzumi, S. Monooxygenase activity of type 3 copper proteins. Acc. Chem. Res. 40, 592–600 (2007).

    CAS  PubMed  Google Scholar 

  87. 87.

    Hoppe, S. & Whitmire, K. H. Synthesis and structure of pentavalent bismuth(v) alkoxides and ligand redistribution equilibria in solution. Organometallics 17, 1347–1354 (1998).

    CAS  Google Scholar 

  88. 88.

    Ozanne‐Beaudenon, A. & Quideau, S. Regioselective hypervalent‐iodine(iii)‐mediated dearomatizing phenylation of phenols through direct ligand coupling. Angew. Chem. Int. Ed. 44, 7065–7069 (2005).

    Google Scholar 

  89. 89.

    Pouységu, L., Deffieux, D. & Quideau, S. Hypervalent iodine-mediated phenol dearomatization in natural product synthesis. Tetrahedron 66, 2235–2261 (2010).

    Google Scholar 

  90. 90.

    Barton, D. H. R., Donnelly, D. M. X., Guiry, P. J. & Finet, J.-P. ortho-Arylation of 3,5-di-tert-butylphenol with aryllead(iv) derivatives: a facile synthesis of sterically hindered phenols. J. Chem. Soc. Perkin Trans. 1, 2921–2926 (1994).

  91. 91.

    Mihailović, M. L., Čeković, Z. & Mathes, B. M. in Encyclopedia of Reagents for Organic Synthesis (John Wiley & Sons, 2005); https://doi.org/10.1002/047084289X.rl006.pub2

  92. 92.

    Taylor, R. Electrophilic Aromatic Substitution (John Wiley & Sons, 1990).

  93. 93.

    Mirica, L. M. et al. Tyrosinase reactivity in a model complex: an alternative hydroxylation mechanism. Science 308, 1890–1892 (2005).

    CAS  PubMed  Google Scholar 

  94. 94.

    Fujieda, N. et al. Activation mechanism of melB tyrosinase from Aspergillus oryzae by acidic treatment. J. Biol. Inorg. Chem. 18, 19–26 (2013).

    CAS  PubMed  Google Scholar 

  95. 95.

    Combes, S. & Finet, J.-P. On the exclusion of radical species in the ligand coupling reactions with pentavalent triarylbismuth derivatives. Tetrahedron 55, 3377–3386 (1999).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by The University of Nottingham.

Author information

Affiliations

Authors

Contributions

M.J. and L.T.B. conceived this work. M.J. and L.M. performed the experiments and analysed the data. W.L. acquired and solved X-ray diffraction data. L.T.B. wrote the manuscript with input from M.J. and L.M.

Corresponding author

Correspondence to Liam T. Ball.

Ethics declarations

Competing interests

Bismacycle 1-OTs has been made commercially available via Key Organics. The sales revenue that is returned to the University of Nottingham covers the costs of commercialization; the authors do not receive profit from any of the sales that are made.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Synthetic procedures, characterization data, crystallographic data tables and NMR spectra.

Crystallographic data

Crystallographic data for compound 1-OTs. CCDC reference 1904059.

Crystallographic data

Crystallographic data for compound 2a. CCDC reference 1904060.

Crystallographic data

Crystallographic data for compound 2b. CCDC reference 1904061.

Crystallographic data

Crystallographic data for compound 2c. CCDC reference 1904062.

Crystallographic data

Crystallographic data for compound 2e. CCDC reference 1904063.

Crystallographic data

Crystallographic data for compound 2g. CCDC reference 1904064.

Crystallographic data

Crystallographic data for compound 2h. CCDC reference 1904065.

Crystallographic data

Crystallographic data for compound 2i. CCDC reference 1904066.

Crystallographic data

Crystallographic data for compound 2j. CCDC reference 1904069.

Crystallographic data

Crystallographic data for compound 2k. CCDC reference 1904067.

Crystallographic data

Crystallographic data for compound 2m. CCDC reference 1904068.

Crystallographic data

Crystallographic data for compound 2u. CCDC reference 1904070.

Crystallographic data

Crystallographic data for compound 2v. CCDC reference 1904071.

Crystallographic data

Crystallographic data for compound 9. CCDC reference 1904072.

Crystallographic data

Crystallographic data for compound 50. CCDC reference 1904073.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jurrat, M., Maggi, L., Lewis, W. et al. Modular bismacycles for the selective C–H arylation of phenols and naphthols. Nat. Chem. 12, 260–269 (2020). https://doi.org/10.1038/s41557-020-0425-4

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing