Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures

Abstract

Functionalizing the surfaces of transition metal dichalcogenide (TMD) nanosheets with noble metals is important for electrically contacting them to devices, as well as improving their catalytic and sensing capabilities. Solution-phase deposition provides a scalable approach to the creation of metal–TMD hybrid systems, but controlling such processes remains challenging. Here we elucidate the different pathways by which gold and silver deposit at room temperature onto colloidal 1T-WS2, 2H-WS2, 2H-MoSe2, 2H-WSe2, 1T′-MoTe2 and Td-WTe2 few-layer nanostructures to produce several distinct classes of 0D–2D and 2D–2D metal–TMD hybrids. Uniform gold nanoparticles form on all of the TMDs. By contrast, silver deposits as nanoparticles with a bimodal size distribution on the disulfides and diselenides, and as atomically thin layers on the ditellurides. The various sizes and morphologies of these surface-bound metal species arise from the relative strengths of the interfacial metal–chalcogen bonds during the reduction of Au3+ or Ag+ by the TMDs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Reduction of Au3+ on TMD nanostructures.
Fig. 2: The influence of electronic structure and structural defects on the reduction of Au3+ on TMD nanostructures.
Fig. 3: Reduction of Ag+ on TMD nanostructures.
Fig. 4: Microscopic evidence of atomic Ag layers deposited on the 1T′-MoTe2 nanostructures.
Fig. 5: Spectroscopic investigation of Ag/1 T′-MoTe2 and Ag/WTe2.
Fig. 6: DFT calculations for noble metal–TMD systems.

Similar content being viewed by others

Data availability

All of the data that support the findings of this study are available within the Article and its Supplementary Information, and/or from the corresponding author on reasonable request.

References

  1. Wang, Q. H., Kalantar-Zadeh, K., Kis, A., Coleman, J. N. & Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012).

    CAS  PubMed  Google Scholar 

  2. Lv, R. et al. Transition metal dichalcogenides and beyond: synthesis, properties, and applications of single- and few-layer nanosheets. Acc. Chem. Res. 48, 56–64 (2015).

    CAS  PubMed  Google Scholar 

  3. Jaramillo, T. F. et al. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 317, 100–102 (2007).

    CAS  PubMed  Google Scholar 

  4. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    CAS  PubMed  Google Scholar 

  5. Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS  PubMed  Google Scholar 

  6. Voiry, D. et al. Covalent functionalization of monolayered transition metal dichalcogenides by phase engineering. Nat. Chem. 7, 45–49 (2014).

    PubMed  Google Scholar 

  7. Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    CAS  PubMed  Google Scholar 

  8. Chen, J. et al. Edge epitaxy of two-dimensional MoSe2 and MoS2 nanosheets on one-dimensional nanowires. J. Am. Chem. Soc. 139, 8653–8660 (2017).

    CAS  PubMed  Google Scholar 

  9. Kang, D.-H. et al. An ultrahigh-performance photodetector based on a perovskite-transition-metal-dichalcogenide hybrid structure. Adv. Mater. 28, 7799–7806 (2016).

    CAS  PubMed  Google Scholar 

  10. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    PubMed  Google Scholar 

  11. Li, H. et al. Synergetic interaction between neighbouring platinum monomers in CO2 hydrogenation. Nat. Nanotechnol. 13, 411–417 (2018).

    CAS  PubMed  Google Scholar 

  12. Huang, X. et al. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat. Commun. 4, 1444 (2013).

    PubMed  Google Scholar 

  13. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 557, 696–700 (2018).

    CAS  PubMed  Google Scholar 

  14. Popov, I., Seifert, G. & Tománek, D. Designing electrical contacts to MoS2 monolayers: a computational study. Phys. Rev. Lett. 108, 156802 (2012).

    PubMed  Google Scholar 

  15. Zhao, W. et al. Exciton–plasmon coupling and electromagnetically induced transparency in monolayer semiconductors hybridized with Ag nanoparticles. Adv. Mater. 28, 2709–2715 (2016).

    CAS  PubMed  Google Scholar 

  16. Zheng, D. et al. Manipulating coherent plasmon–exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett. 17, 3809–3814 (2017).

    CAS  PubMed  Google Scholar 

  17. Najmaei, S. et al. Plasmonic pumping of excitonic photoluminescence in hybrid MoS2–Au nanostructures. ACS Nano 8, 12682–12689 (2014).

    CAS  PubMed  Google Scholar 

  18. Gong, C. et al. Metal contacts on physical vapor deposited monolayer MoS2. ACS Nano 7, 11350–11357 (2013).

    CAS  PubMed  Google Scholar 

  19. Lei, S. et al. Surface functionalization of two-dimensional metal chalcogenides by lewis acid–base chemistry. Nat. Nanotechnol. 11, 465–471 (2016).

    CAS  PubMed  Google Scholar 

  20. Son, D. et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory. Adv. Mater. 28, 9326–9332 (2016).

    CAS  PubMed  Google Scholar 

  21. Mahler, B., Hoepfner, V., Liao, K. & Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014).

    CAS  PubMed  Google Scholar 

  22. Yoo, D., Kim, M., Jeong, S., Han, J. & Cheon, J. Chemical synthetic strategy for single-layer transition-metal chalcogenides. J. Am. Chem. Soc. 136, 14670–14673 (2014).

    CAS  PubMed  Google Scholar 

  23. Jung, W. et al. Colloidal synthesis of single-layer MSe2 (M = Mo, W) nanosheets via anisotropic solution-phase growth approach. J. Am. Chem. Soc. 137, 7266–7269 (2015).

    CAS  PubMed  Google Scholar 

  24. Sun, D., Feng, S., Terrones, M. & Schaak, R. E. Formation and interlayer decoupling of colloidal MoSe2 nanoflowers. Chem. Mater. 27, 3167–3175 (2015).

    CAS  Google Scholar 

  25. Sun, Y. et al. Low-temperature solution synthesis of few-layer 1T’-MoTe2 nanostructures exhibiting lattice compression. Angew. Chem. Int. Ed. 55, 2830–2834 (2016).

    CAS  Google Scholar 

  26. Sun, Y., Fujisawa, K., Terrones, M. & Schaak, R. E. Solution synthesis of few-layer WTe2 and MoxW1−xTe2 nanostructures. J. Mater. Chem. C 5, 11317–11323 (2017).

    CAS  Google Scholar 

  27. Sun, Y. et al. Low-temperature solution synthesis of transition metal dichalcogenide alloys with tunable optical properties. J. Am. Chem. Soc. 139, 11096–11105 (2017).

    CAS  PubMed  Google Scholar 

  28. Kim, J., Byun, S., Smith, A. J., Yu, J. & Huang, J. Enhanced electrocatalytic properties of transition-metal dichalcogenides sheets by spontaneous gold nanoparticle decoration. J. Phys. Chem. Lett. 4, 1227–1232 (2013).

    CAS  PubMed  Google Scholar 

  29. Yeh, Y.-T. et al. Light-emitting transition metal dichalcogenide monolayers under cellular digestion. Adv. Mater. 30, 1703321 (2018).

    Google Scholar 

  30. Raza, F. et al. Structuring Pd nanoparticles on 2H-WS2 nanosheets induces excellent photocatalytic activity for cross-coupling reactions under visible light. J. Am. Chem. Soc. 139, 14767–14774 (2017).

    CAS  PubMed  Google Scholar 

  31. Huo, Z., Tsung, C., Huang, W., Zhang, X. & Yang, P. Sub-two nanometer single crystal Au nanowires. Nano Lett. 8, 2041–2044 (2008).

    CAS  PubMed  Google Scholar 

  32. Peng, S. et al. A facile synthesis of monodisperse Au nanoparticles and their catalysis of CO oxidation. Nano Res. 1, 229–234 (2008).

    CAS  Google Scholar 

  33. Choi, H. C., Shim, M., Bangsaruntip, S. & Dai, H. Spontaneous reduction of metal ions on the sidewalls of carbon nanotubes. J. Am. Chem. Soc. 124, 9058–9059 (2002).

    CAS  PubMed  Google Scholar 

  34. Zhou, W. et al. Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett. 13, 2615–2622 (2013).

    CAS  PubMed  Google Scholar 

  35. Sun, Y. et al. Defect-mediated selective hydrogenation of nitroarenes on nanostructured WS2. Chem. Sci. 10, 10310–10317 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 96, 1533–1554 (1996).

    CAS  PubMed  Google Scholar 

  37. Laibinis, P. E. et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113, 7152–7167 (1991).

    CAS  Google Scholar 

  38. Hebb, M. H. Electrical conductivity of silver sulfide. J. Chem. Phys. 20, 185–190 (1952).

    CAS  Google Scholar 

  39. Elliott, S. R. A unified mechanism for metal photodissolution in amorphous chalcogenide materials. J. Non-Cryst. Solids 130, 85–97 (1991).

    CAS  Google Scholar 

  40. Hodges, J. M., Morse, J. R., Williams, M. E. & Schaak, R. E. Microscopic investigation of chemoselectivity in Ag–Pt–Fe3O4 heterotrimer formation: mechanistic insights and implications for controlling high-order hybrid nanoparticle morphology. J. Am. Chem. Soc. 137, 15493–15500 (2015).

    CAS  PubMed  Google Scholar 

  41. Ridelman, Y. et al. Metallic nanobowls by galvanic replacement reaction on heterodimeric nanoparticles. Small 8, 654–660 (2012).

    CAS  PubMed  Google Scholar 

  42. Hla, S. W., Prodan, A. & van Midden, H. J. P. Atomistic stress fluctuation at surfaces and edges of epitaxially grown silver nanorods. Nano Lett. 4, 1221–1224 (2004).

    CAS  Google Scholar 

  43. Milenov, T. I. et al. Preliminary studies of the Raman spectra of Ag2Te and Ag5Te3. Opt. Quant. Electron. 46, 573–580 (2014).

    CAS  Google Scholar 

  44. Gaarenstroom, S. W. & Winograd, N. Initial and final state effects in the ESCA spectra of cadmium and silver oxides. J. Chem. Phys. 67, 3500–3506 (1977).

    CAS  Google Scholar 

  45. Rodriguez, J. A. & Goodman, D. W. Surface science studies of the electronic and chemical properties of bimetallic systems. J. Phys. Chem. 95, 4196–4206 (1991).

    CAS  Google Scholar 

  46. Hu, P. et al. Electronic metal–support interactions in single-atom catalysts. Angew. Chem. Int. Ed. 53, 3418–3421 (2014).

    CAS  Google Scholar 

  47. Miller, J. T. et al. The effect of gold particle size on the Au–Au bond distance and ractivity toward oxygen in supported catalysts. J. Catal. 240, 222–234 (2006).

    CAS  Google Scholar 

  48. Wei, H. et al. Selective hydrogenation of acrolein on supported silver catalysts: a kinetic study of particle size effects. J. Catal. 298, 18–26 (2013).

    CAS  Google Scholar 

  49. van der Lee, A. & de Boer, J. L. Redetermination of the structure of hessite, Ag2Te-iii. Acta Cryst. C 49, 1444–1446 (1993).

    Google Scholar 

  50. Dawson, W. & Bullett, D. Electronic structure and crystallography of MoTe2 and WTe2. J. Phys. C 20, 6159–6174 (1987).

    CAS  Google Scholar 

  51. Hla, S. W., Marinković, V. & Prodan, A. The growth of gold on (001) surfaces of α- and β-MoTe2. Surf. Sci. 356, 130–136 (1996).

    CAS  Google Scholar 

  52. Plieth, W. J. Electrochemical properties of small clusters of metal atoms and their role in the surface enhanced Raman scattering. J. Phys. Chem. 86, 3166–3170 (1982).

    CAS  Google Scholar 

  53. Tang, L. et al. Electrochemical stability of nanometer-scale Pt particles in acidic environments. J. Am. Chem. Soc. 132, 596–600 (2010).

    CAS  PubMed  Google Scholar 

  54. Tauster, S. J., Fung, S. C., Baker, R. T. K. & Horsley, J. A. Strong interactions in supported-metal catalysts. Science 211, 1121–1125 (1981).

    CAS  PubMed  Google Scholar 

  55. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    CAS  PubMed  Google Scholar 

  56. Koch, C. T. Determination of Core Structure Periodicity and Point Defect Density along Dislocations. PhD thesis, Arizona State Univ. (2002).

  57. Rehr, J. J., Kas, J. J., Vila, F. D., Prange, M. P. & Jorissen, K. Parameter-free calculations of X-ray spectra with FEFF9. Phys. Chem. Chem. Phys. 12, 5503 (2010).

    CAS  PubMed  Google Scholar 

  58. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    PubMed  Google Scholar 

  59. Tran, F., Stelzl, J. & Blaha, P. Rungs 1 to 4 of DFT Jacob’s ladder: extensive test on the lattice constant, bulk modulus, and cohesive energy of solids. J. Chem. Phys. 144, 204120 (2016).

    PubMed  Google Scholar 

  60. Elsasser, C. et al. Relativistic effects on ground state properties of 4d and 5d transition metals. J. Phys. Condens. Matter 2, 4371–4394 (1990).

    CAS  Google Scholar 

  61. Granatier, J., Lazar, P., Otyepka, M. & Hobza, P. The nature of the binding of Au, Ag, and Pd to benzene, coronene, and graphene: from benchmark CCSD(T) calculations to plane-wave DFT calculations. J. Chem. Theory Comput. 7, 3743–3755 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Y.S. and R.E.S. were supported by the US National Science Foundation grant DMR-1607135 for the initial synthesis of the TMD nanostructures and grant CHE-1707830 for the studies involving deposition of Au and Ag. Y.W. and V.H.C. acknowledge the National Science Foundation Materials Innovation Platform Two-Dimensional Crystal Consortium under grant no. DMR-1539916. J.Y.C.C. and C.F.H. were supported by funds from Penn State University. Y.S., K.F. and M.T. acknowledge support from the Air Force Office of Scientific Research (AFOSR) grant FA9550-18-1-0072. J.T.M. was supported by the National Science Foundation under Cooperative Agreement no. EEC‐1647722. V.H.C. and M.T. also acknowledge the Center for 2-Dimensional and Layered Materials at the Pennsylvania State University. Electron microscopy and XPS were performed at the Electron Microscopy Facility at the Materials Characterization Lab of the Penn State Materials Research Institute. Use of APS is supported by the US Department of Energy, Office of Science, and Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357. MRCAT operations (beamline 10-BM) are supported by the Department of Energy and the MRCAT member institutions. We thank J. Katsoudas and J. Wright for the assistance during XAS experiments at the 10-BM beamline at the APS at Argonne National Laboratory. We also thank J. Grey and K. Wang for assistance with TEM characterization and J. Shallenberger for XPS acquisition and analysis.

Author information

Authors and Affiliations

Authors

Contributions

Y.S. carried out all the synthetic work and characterization by XRD, TEM, HAADF-STEM, STEM-EDS and Raman. Y.W. and V.H.C. performed the DFT calculations. J.Y.C.C., C.F.H. and Y.S. conducted the XAS measurements. J.Y.C.C. and J.T.M. analysed EXAFS and XANES data. C.F.H. also carried out XPS acquisition and analysis for part of the samples. K.F. carried out the high-resolution ADF-STEM imaging and simulation. M.T. and R.E.S. conceived and directed the project. Y.S., Y.W., J.Y.C.C., V.H.C., M.T. and R.E.S. prepared the manuscript.

Corresponding authors

Correspondence to Vincent H. Crespi, Mauricio Terrones or Raymond E. Schaak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Additional experimental and calculation details, Supplementary Tables 1–5, Figs. 1–34 and refs. 1–25.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Wang, Y., Chen, J.Y.C. et al. Interface-mediated noble metal deposition on transition metal dichalcogenide nanostructures. Nat. Chem. 12, 284–293 (2020). https://doi.org/10.1038/s41557-020-0418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-0418-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing