Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting


Metal–organic frameworks (MOFs) have been studied extensively in the hydrogen evolution reaction (HER) and the water oxidation reaction (WOR) with sacrificial reagents, but overall photocatalytic water splitting using MOFs has remained challenging, principally because of the fast recombination of photo-generated electrons and holes. Here we have integrated HER- and WOR-MOF nanosheets into liposomal structures for separation of the generated charges. The HER-MOF nanosheets comprise light-harvesting Zn–porphyrin and catalytic Pt–porphyrin moieties, and are functionalized with hydrophobic groups to facilitate their incorporation into the hydrophobic lipid bilayer of the liposome. The WOR-MOF flakes consist of [Ru(2,2′-bipyridine)3]2+-based photosensitizers and Ir–bipyridine catalytic centres, and are localized in the hydrophilic interior of the liposome. This liposome–MOF assembly achieves overall photocatalytic water splitting with an apparent quantum yield of (1.5 ± 1)% as a result of ultrafast electron transport from the antennae (Zn–porphyrin and [Ru(2,2′-bipyridine)3]2+) to the reaction centres (Pt–porphyrin and Ir–bipyridine) in the MOFs and efficient charge separation in the lipid bilayers.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure of the LP–MOF for overall photocatalytic water splitting and the proposed ‘Z-scheme’ electron-transfer chain in the LP–MOF system.
Fig. 2: HER-MOF and WOR-MOF structures.
Fig. 3: Preparation and characterization of HER-MOF and WOR-MOF.
Fig. 4: Construction and confocal fluorescence microscopy images of LP–HER-WOR-MOF.
Fig. 5: Photocatalytic activity of LP–MOF hybrids.
Fig. 6: Transient absorption spectra of HER-MOF and WOR-MOF.
Fig. 7: The photocatalytic cycle and energy level diagram.

Data availability

Source data are provided with this paper. All of the data that support the findings of this study, including catalytic measurements, material characterizations and spectroscopic data, are available within the paper and its Supplementary Information files. Further requests about the data can be directed to the corresponding author.


  1. 1.

    Ciamician, G. The photochemistry of the future. Science 36, 385–394 (1912).

    CAS  PubMed  Google Scholar 

  2. 2.

    Barber, J. Photosynthetic energy conversion: natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    CAS  PubMed  Google Scholar 

  3. 3.

    Favereau, L. et al. A molecular tetrad that generates a high-energy charge-separated state by mimicking the photosynthetic Z-scheme. J. Am. Chem. Soc. 138, 3752–3760 (2016).

    CAS  PubMed  Google Scholar 

  4. 4.

    Kothe, T. et al. Combination of a photosystem 1-based photocathode and a photosystem 2-based photoanode to a Z-scheme mimic for biophotovoltaic applications. Angew. Chem. Int. Ed. 52, 14233–14236 (2013).

    CAS  Google Scholar 

  5. 5.

    Tian, H., Yu, Z., Hagfeldt, A., Kloo, L. & Sun, L. Organic redox couples and organic counter electrode for efficient organic dye-sensitized solar cells. J. Am. Chem. Soc. 133, 9413–9422 (2011).

    CAS  PubMed  Google Scholar 

  6. 6.

    Sokol, K. P. et al. Bias-free photoelectrochemical water splitting with photosystem II on a dye-sensitized photoanode wired to hydrogenase. Nat. Energy 3, 944–951 (2018).

    CAS  Google Scholar 

  7. 7.

    Li, Z. et al. Biomimetic electron transport via multiredox shuttles from photosystem II to a photoelectrochemical cell for solar water splitting. Energy Environ. Sci. 10, 765–771 (2017).

    CAS  Google Scholar 

  8. 8.

    Tachibana, Y., Vayssieres, L. & Durrant, J. R. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6, 511–518 (2012).

    CAS  Google Scholar 

  9. 9.

    Li, F. et al. Organic dye-sensitized tandem photoelectrochemical cell for light driven total water splitting. J. Am. Chem. Soc. 137, 9153–9159 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Gurudayal et al. Perovskite–hematite tandem cells for efficient overall solar driven water splitting. Nano Lett. 15, 3833–3839 (2015).

    CAS  PubMed  Google Scholar 

  11. 11.

    Wang, W., Li, Z., Chen, J. & Li, C. Crucial roles of electron–proton transport relay in the photosystem II-photocatalytic hybrid system for overall water splitting. J. Phys. Chem. C 121, 2605–2612 (2017).

    CAS  Google Scholar 

  12. 12.

    Cui, Y. et al. Metal–organic frameworks as platforms for functional materials. Acc. Chem. Res. 49, 483–493 (2016).

    CAS  PubMed  Google Scholar 

  13. 13.

    Fateeva, A. et al. A water-stable porphyrin-based metal–organic framework active for visible-light photocatalysis. Angew. Chem. Int. Ed. 51, 7440–7444 (2012).

    CAS  Google Scholar 

  14. 14.

    Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Maza, W. A., Padilla, R. & Morris, A. J. Concentration dependent dimensionality of resonance energy transfer in a postsynthetically doped morphologically homologous analogue of UiO-67 MOF with a ruthenium(II) polypyridyl complex. J. Am. Chem. Soc. 137, 8161–8168 (2015).

    CAS  PubMed  Google Scholar 

  16. 16.

    Son, H. J. et al. Light-harvesting and ultrafast energy migration in porphyrin-based metal–organic frameworks. J. Am. Chem. Soc. 135, 862–869 (2013).

    CAS  PubMed  Google Scholar 

  17. 17.

    Choi, K. M. et al. Plasmon-enhanced photocatalytic CO2 conversion within metal–organic frameworks under visible light. J. Am. Chem. Soc. 139, 356–362 (2017).

    CAS  PubMed  Google Scholar 

  18. 18.

    Nilsson, T. et al. Lipid-mediated protein-protein interactions modulate respiration-driven ATP synthesis. Sci. Rep. 6, 24113 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Steinberg-Yfrach, G. et al. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 385, 239–241 (1997).

    CAS  Google Scholar 

  20. 20.

    Li, Y. et al. Supramolecular assembly of photosystem II and adenosine triphosphate synthase in artificially designed honeycomb multilayers for photophosphorylation. ACS Nano. 12, 1455–1461 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Limburg, B. et al. Kinetics of photocatalytic water oxidation at liposomes: membrane anchoring stabilizes the photosensitizer. ACS Catal. 6, 5968–5977 (2016).

    CAS  Google Scholar 

  22. 22.

    Limburg, B., Bouwman, E. & Bonnet, S. Molecular water oxidation catalysts based on transition metals and their decomposition pathways. Coord. Chem. Rev. 256, 1451–1467 (2012).

    CAS  Google Scholar 

  23. 23.

    Fang, X. et al. Single Pt atoms confined into a metal–organic framework for efficient photocatalysis. Adv. Mater. 30, 1705112 (2018).

    Google Scholar 

  24. 24.

    Wang, C., Wang, J.-L. & Lin, W. Elucidating molecular iridium water oxidation catalysts using metal–organic frameworks: a comprehensive structural, catalytic, spectroscopic, and kinetic study. J. Am. Chem. Soc. 134, 19895–19908 (2012).

    CAS  PubMed  Google Scholar 

  25. 25.

    Hu, Z. et al. Kinetically controlled synthesis of two-dimensional Zr/Hf metal–organic framework nanosheets via a modulated hydrothermal approach. J. Mater. Chem. A 5, 8954–8963 (2017).

    CAS  Google Scholar 

  26. 26.

    Maza, W. A. & Morris, A. J. Photophysical characterization of a ruthenium(II) tris(2,2′-bipyridine)-doped zirconium UiO-67 metal–organic framework. J. Phys. Chem. C 118, 8803–8817 (2014).

    CAS  Google Scholar 

  27. 27.

    Feng, D. et al. Zirconium-metalloporphyrin PCN-222: mesoporous metal–organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem. Int. Ed. 51, 10307–10310 (2012).

    CAS  Google Scholar 

  28. 28.

    He, T. et al. Ultrathin 2D zirconium metal–organic framework nanosheets: preparation and application in photocatalysis. Small 14, 1703929 (2018).

    Google Scholar 

  29. 29.

    Dai, R. et al. Electron crystallography reveals atomic structures of metal–organic nanoplates with M123-O)83-OH)82-OH)6 (M = Zr, Hf) secondary building units. Inorg. Chem. 56, 8128–8134 (2017).

    CAS  PubMed  Google Scholar 

  30. 30.

    Cliffe, M. J. et al. Metal–organic nanosheets formed via defect-mediated transformation of a hafnium metal–organic framework. J. Am. Chem. Soc. 139, 5397–5404 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Xie, R., Hong, S., Feng, L., Rong, J. & Chen, X. Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. J. Am. Chem. Soc. 134, 9914–9917 (2012).

    CAS  PubMed  Google Scholar 

  32. 32.

    Wang, C., deKrafft, K. E. & Lin, W. Pt nanoparticles@photoactive metal–organic frameworks: efficient hydrogen evolution via synergistic photoexcitation and electron injection. J. Am. Chem. Soc. 134, 7211–7214 (2012).

    CAS  PubMed  Google Scholar 

  33. 33.

    Lv, H. et al. A noble-metal-free, tetra-nickel polyoxotungstate catalyst for efficient photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14015–14018 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    Kim, D., Whang, D. R. & Park, S. Y. Self-healing of molecular catalyst and photosensitizer on metal–organic framework: robust molecular system for photocatalytic H2 evolution from water. J. Am. Chem. Soc. 138, 8698–8701 (2016).

    CAS  PubMed  Google Scholar 

  35. 35.

    Zhang, F.-M. et al. Rational design of MOF/COF hybrid materials for photocatalytic H2 evolution in the presence of sacrificial electron donors. Angew. Chem. Int. Ed. 57, 12106–12110 (2018).

    CAS  Google Scholar 

  36. 36.

    Eckenhoff, W. T. & Eisenberg, R. Molecular systems for light driven hydrogen production. Dalton Trans. 41, 13004–13021 (2012).

    CAS  PubMed  Google Scholar 

  37. 37.

    Bae, E. & Choi, W. Effect of the anchoring group (carboxylate vs phosphonate) in Ru-complex-sensitized TiO2 on hydrogen production under visible light. J. Phys. Chem. B 110, 14792–14799 (2006).

    CAS  PubMed  Google Scholar 

  38. 38.

    Lan, Q. et al. Highly dispersed polyoxometalate-doped porous Co3O4 water oxidation photocatalysts derived from POM@MOF crystalline materials. Chem. Eur. J. 22, 15513–15520 (2016).

    CAS  PubMed  Google Scholar 

  39. 39.

    Huang, Z. et al. Efficient light-driven carbon-free cobalt-based molecular catalyst for water oxidation. J. Am. Chem. Soc. 133, 2068–2071 (2011).

    CAS  PubMed  Google Scholar 

  40. 40.

    Chi, L., Xu, Q., Liang, X., Wang, J. & Su, X. Iron-based metal–organic frameworks as catalysts for visible light-driven water oxidation. Small 12, 1351–1358 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Wang, Q. et al. Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure. J. Am. Chem. Soc. 139, 1675–1683 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Iwase, A., Ng, Y. H., Ishiguro, Y., Kudo, A. & Amal, R. Reduced graphene oxide as a solid-state electron mediator in Z-scheme photocatalytic water splitting under visible light. J. Am. Chem. Soc. 133, 11054–11057 (2011).

    CAS  PubMed  Google Scholar 

  43. 43.

    Melo, M. A. et al. Surface photovoltage measurements on a particle tandem photocatalyst for overall water splitting. Nano Lett. 18, 805–810 (2018).

    CAS  PubMed  Google Scholar 

  44. 44.

    Zhu, M., Sun, Z., Fujitsuka, M. & Majima, T. Z-scheme photocatalytic water splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light. Angew. Chem. Int. Ed. 57, 2160–2164 (2018).

    CAS  Google Scholar 

  45. 45.

    Gurzadyan, G. G., Tran-Thi, T.-H. & Gustavsson, T. Time-resolved fluorescence spectroscopy of high-lying electronic states of Zn-tetraphenylporphyrin. J. Chem. Phys. 108, 385–388 (1998).

    CAS  Google Scholar 

  46. 46.

    Tran Thi, T. H., Desforge, C., Thiec, C. & Gaspard, S. Singlet–singlet and triplet–triplet intramolecular transfer processes in a covalently linked porphyrin–phthalocyanine heterodimer. J. Phys. Chem. 93, 1226–1233 (1989).

    CAS  Google Scholar 

  47. 47.

    Reichardt, C. et al. Excited state dynamics of a photobiologically active Ru(II) dyad are altered in biologically relevant environments. J. Phys. Chem. A 121, 5635–5644 (2017).

    CAS  PubMed  Google Scholar 

  48. 48.

    Limburg, B., Bouwman, E. & Bonnet, S. Rate and stability of photocatalytic water oxidation using [Ru(bpy)3]2+ as photosensitizer. ACS Catal. 6, 5273–5284 (2016).

    CAS  Google Scholar 

  49. 49.

    Wang, C., Xie, Z., deKrafft, K. E. & Lin, W. Light-harvesting cross-linked polymers for efficient heterogeneous photocatalysis. ACS Appl. Mater. Interfaces 4, 2288–2294 (2012).

    CAS  PubMed  Google Scholar 

  50. 50.

    Hong, D., Yamada, Y., Nagatomi, T., Takai, Y. & Fukuzumi, S. Catalysis of nickel ferrite for photocatalytic water oxidation using [Ru(bpy)3]2+ and S2O82−. J. Am. Chem. Soc. 134, 19572–19575 (2012).

    CAS  PubMed  Google Scholar 

  51. 51.

    Jiang, Y. et al. Simulating powder X-ray diffraction patterns of two-dimensional materials. Inorg. Chem. 57, 15123–15132 (2018).

    CAS  PubMed  Google Scholar 

  52. 52.

    Hatchard, C. G. & Parker, C. A. A new sensitive chemical actinometer - II. Potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. Lond. A 235, 518–536 (1956).

    CAS  Google Scholar 

Download references


We acknowledge funding support from the Ministry of Science and Technology of China (2016YFA0200702) and the National Natural Science Foundation of China (no. 21671162 and no. 21721001). We acknowledge R. Huang and S. Zhang, B. Xu, Q. Wang, D. Guo and Y. Jiang for experimental help.

Author information




H.H. and C.W. conceived and designed this project. H.H. carried out the synthesis of the materials, characterized the materials and analysed the data. L.C. helped with the data analysis and structural determination. H.H. also performed the catalysis study. Z.W. and C.Z. performed the transient absorption experiments and data analysis. L.Z. performed elemental analysis. H.H., C.W. and W.L. wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Cheng Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1–67, Tables 1–12, general experimental and chemicals, methods and refs. 1–21.

Source data

Source Data Fig. 2

AFM height measurement.

Source Data Fig. 3

Spectroscopic source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Spectroscopic source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hu, H., Wang, Z., Cao, L. et al. Metal–organic frameworks embedded in a liposome facilitate overall photocatalytic water splitting. Nat. Chem. 13, 358–366 (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing