Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The photochemical reaction of phenol becomes ultrafast at the air–water interface

Abstract

Reactions at the interface between water and other phases play important roles in nature and in various chemical systems. Although some experimental and theoretical studies suggest that chemical reactions at water interfaces can be different from those in bulk water—for example, ‘on-water catalysis’ and the activation of photochemically inert fatty acids at the air–water interface upon photoexcitation—directly investigating these differences and generating molecular-level understanding has proved difficult. Here, we report on the direct probing of a photochemical reaction occurring at the air–water interface, using ultrafast phase-sensitive interface-selective nonlinear vibrational spectroscopy. The femtosecond time-resolved data obtained clearly show that the photoionization reaction of phenol proceeds 104 times faster at the water surface than in the bulk aqueous phase (upon irradiation with photons with the same energy). This finding demonstrates that photochemical reactions at water interfaces are very different from those in bulk water, reflecting distinct reaction environments at the interface.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental scheme for UV-TR-HD-VSFG of phenol at the air–water interface.
Fig. 2: Steady-state vibrational Imχ(2) spectra of the air–water and air–phenol aqueous solution interfaces.
Fig. 3: Time-resolved vibrational Imχ(2) spectra of the air–phenol aqueous solution interface after UV (267 nm) excitation.
Fig. 4: Spectra of the three transients observed with photoexcitation of phenol at the water interface.
Fig. 5: Photochemical dynamics of phenol excited by 267-nm light at the air–water interface and in bulk water.

Data availability

The data in Figs. 24 and Supplementary Figs. 25 are provided as Microsoft Excel files linked in the source data for this Article. Source data are provided with this paper.

References

  1. 1.

    Narayan, S. et al. ‘On water’: unique reactivity of organic compounds in aqueous in aqueous suspension. Angew. Chem. Int. Ed. 44, 3275–3279 (2005).

    CAS  Google Scholar 

  2. 2.

    Klijn, J. E. & Engberts, J. B. F. N. Fast reactions ‘on water’. Nature 435, 746–747 (2005).

    CAS  PubMed  Google Scholar 

  3. 3.

    Jung, Y. & Marcus, R. A. On the theory of organic catalysis ‘on water’. J. Am. Chem. Soc. 129, 5492–5502 (2007).

    CAS  PubMed  Google Scholar 

  4. 4.

    Rossignol, S. et al. Atmospheric photochemistry at a fatty acid-coated air–water interface. Science 353, 699–702 (2016).

    CAS  PubMed  Google Scholar 

  5. 5.

    Matsuzaki, K. et al. Partially hydrated electrons at the air/water interface observed by UV-excited time-resolved heterodyne-detected vibrational sum frequency generation spectroscopy. J. Am. Chem. Soc. 138, 7551–7557 (2016).

    CAS  PubMed  Google Scholar 

  6. 6.

    Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Direct evidence for orientational flip-flop of water molecules at charged interfaces: a heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 130, 204704 (2009).

    PubMed  Google Scholar 

  7. 7.

    Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Water hydrogen bond structure near highly charged interfaces is not like ice. J. Am. Chem. Soc. 132, 6867–6869 (2010).

    CAS  PubMed  Google Scholar 

  8. 8.

    Mondal, J. A., Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Three distinct water structures at a zwitterionic lipid/water interface revealed by heterodyne-detected vibrational sum frequency generation. J. Am. Chem. Soc. 134, 7842–7850 (2012).

    CAS  PubMed  Google Scholar 

  9. 9.

    Nihonyanagi, S., Mondal, J. A., Yamaguchi, S. & Tahara, T. Structure and dynamics of interfacial water studied by heterodyne-detected vibrational sum-frequency generation. Annu. Rev. Phys. Chem. 64, 579–603 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Shen, Y. R. Phase-sensitive sum-frequency spectroscopy. Annu. Rev. Phys. Chem. 64, 129–150 (2013).

    CAS  PubMed  Google Scholar 

  11. 11.

    Kusaka, R. & Watanabe, M. The structure of a lanthanide complex at an extractant/water interface studied using heterodyne-detected vibrational sum frequency generation. Phys. Chem. Chem. Phys. 20, 2809–2813 (2018).

    CAS  PubMed  Google Scholar 

  12. 12.

    Urashima, S. H., Myalitsin, A., Nihonyanagi, S. & Tahara, T. The topmost water structure at a charged silica/aqueous interface revealed by heterodyne-detected vibrational sum frequency generation spectroscopy. J. Phys. Chem. Lett. 9, 4109–4114 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Xiong, W., Laaser, J. E., Mehlenbacher, R. D. & Zanni, M. T. Adding a dimension to the infrared spectra of interfaces using heterodyne detected 2D sum-frequency generation (HD 2D SFG) spectroscopy. Proc. Natl Acad. Sci. USA 108, 20902–20907 (2011).

    CAS  PubMed  Google Scholar 

  14. 14.

    Nihonyanagi, S., Singh, P. C., Yamaguchi, S. & Tahara, T. Ultrafast vibrational dynamics of a charged aqueous interface by femtosecond time-resolved heterodyne-detected vibrational sum frequency generation. Bull. Chem. Soc. Jpn 85, 758–760 (2012).

    CAS  Google Scholar 

  15. 15.

    Singh, P. C., Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Ultrafast vibrational dynamics of water at a charged interface revealed by two-dimensional heterodyne-detected vibrational sum frequency generation. J. Chem. Phys. 137, 094706 (2012).

    PubMed  Google Scholar 

  16. 16.

    Singh, P. C., Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Communication: ultrafast vibrational dynamics of hydrogen bond network terminated at the air/water interface: a two-dimensional heterodyne-detected vibrational sum frequency generation study. J. Chem. Phys. 139, 161101 (2013).

    PubMed  Google Scholar 

  17. 17.

    Laaser, J. E. et al. Two-dimensional sum-frequency generation reveals structure and dynamics of a surface-bound peptide. J. Am. Chem. Soc. 136, 956–962 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Singh, P. C., Nihonyanagi, S., Yamaguchi, S. & Tahara, T. Interfacial water in the vicinity of a positively charged interface studied by steady-state and time-resolved heterodyne-detected vibrational sum frequency generation. J. Chem. Phys. 141, 18C527 (2014).

    PubMed  Google Scholar 

  19. 19.

    Inoue, K., Nihonyanagi, S., Singh, P. C., Yamaguchi, S. & Tahara, T. 2D heterodyne-detected sum frequency generation study on the ultrafast vibrational dynamics of H2O and HOD water at charged interfaces. J. Chem. Phys. 142, 212431 (2015).

    PubMed  Google Scholar 

  20. 20.

    Kusaka, R., Ishiyama, T., Nihonyanagi, S., Morita, A. & Tahara, T. Structure at the air/water interface in the presence of phenol: a study using heterodyne-detected vibrational sum frequency generation and molecular dynamics simulation. Phys. Chem. Chem. Phys. 20, 3002–3009 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Rayne, S., Forest, K. & Friesen, K. J. Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. A review. Environ. Int. 35, 425–437 (2009).

    CAS  PubMed  Google Scholar 

  22. 22.

    Oliver, T. A. A., Zhang, Y. Y., Roy, A., Ashfold, M. N. R. & Bradforth, S. E. Exploring autoionization and photoinduced proton-coupled electron transfer pathways of phenol in aqueous solution. J. Phys. Chem. Lett. 6, 4159–4164 (2015).

    CAS  PubMed  Google Scholar 

  23. 23.

    Du, Q., Superfine, R., Freysz, E. & Shen, Y. R. Vibrational spectroscopy of water at the vapor water interface. Phys. Rev. Lett. 70, 2313–2316 (1993).

    CAS  PubMed  Google Scholar 

  24. 24.

    Ji, N., Ostroverkhov, V., Tian, C. S. & Shen, Y. R. Characterization of vibrational resonances of water–vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100, 096102 (2008).

    CAS  PubMed  Google Scholar 

  25. 25.

    Nihonyanagi, S. et al. Accurate determination of complex χ(2) spectrum of the air/water interface. J. Chem. Phys. 143, 124707 (2015).

    PubMed  Google Scholar 

  26. 26.

    Tian, C. S., Ji, N., Waychunas, G. A. & Shen, Y. R. Interfacial structures of acidic and basic aqueous solutions. J. Am. Chem. Soc. 130, 13033–13039 (2008).

    CAS  PubMed  Google Scholar 

  27. 27.

    Coutinho, K., Cabral, B. J. C. & Canuto, S. Can larger dipoles solvate less? Solute–solvent hydrogen bond and the differential solvation of phenol and phenoxy. Chem. Phys. Lett. 399, 534–538 (2004).

    CAS  Google Scholar 

  28. 28.

    Wraight, C. A. Chance and design—proton transfer in water, channels and bioenergetic proteins. Biochim. Biophys. Acta Bioenerg. 1757, 886–912 (2006).

    CAS  Google Scholar 

  29. 29.

    Turi, L. & Rossky, P. J. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem. Rev. 112, 5641–5674 (2012).

    CAS  PubMed  Google Scholar 

  30. 30.

    Riley, J. W. et al. Unravelling the role of an aqueous environment on the electronic structure and ionization of phenol using photoelectron spectroscopy. J. Phys. Chem. Lett. 9, 678–682 (2018).

    CAS  PubMed  Google Scholar 

  31. 31.

    Iqbal, A., Cheung, M. S. Y., Nix, M. G. D. & Stavros, V. G. Exploring the time-scales of H-atom detachment from photoexcited phenol-h6 and phenol-d5: statistical vs nonstatistical decay. J. Phys. Chem. A 113, 8157–8163 (2009).

    CAS  PubMed  Google Scholar 

  32. 32.

    Roberts, G. M., Chatterley, A. S., Young, J. D. & Stavros, V. G. Direct observation of hydrogen tunneling dynamics in photoexcited phenol. J. Phys. Chem. Lett. 3, 348–352 (2012).

    CAS  PubMed  Google Scholar 

  33. 33.

    Tamburello-Luca, A. A., Hébert, P., Brevet, P. F. & Girault, H. H. Resonant-surface second-harmonic generation studies of phenol derivatives at air/water and hexane/water interfaces. J. Chem. Soc. Faraday Trans. 92, 3079–3085 (1996).

    CAS  Google Scholar 

  34. 34.

    Sobolewski, A. L. & Domcke, W. Photoinduced electron and proton transfer in phenol and its clusters with water and ammonia. J. Phys. Chem. A 105, 9275–9283 (2001).

    CAS  Google Scholar 

  35. 35.

    Wang, H., Borguet, E. & Eisenthal, K. B. Polarity of liquid interfaces by second harmonic generation spectroscopy. J. Phys. Chem. A 101, 713–718 (1997).

    CAS  Google Scholar 

  36. 36.

    Wang, H., Borguet, E. & Eisenthal, K. B. Generalized interface polarity scale based on second harmonic spectroscopy. J. Phys. Chem. B 102, 4927–4932 (1998).

    CAS  Google Scholar 

  37. 37.

    Sen, S., Yamaguchi, S. & Tahara, T. Different molecules experience different polarities at the air/water interface. Angew. Chem. Int. Ed. 48, 6439–6442 (2009).

    CAS  Google Scholar 

  38. 38.

    Watanabe, H., Yamaguchi, S., Sen, S., Morita, A. & Tahara, T. ‘Half-hydration’ at the air/water interface revealed by heterodyne-detected electronic sum frequency generation spectroscopy, polarization second harmonic generation, and molecular dynamics simulation. J. Chem. Phys. 132, 144701 (2010).

    PubMed  Google Scholar 

  39. 39.

    Yamaguchi, S., Watanabe, H., Mondal, S. K., Kundu, A. & Tahara, T. ‘Up’ versus ‘down’ alignment and hydration structures of solutes at the air/water interface revealed by heterodyne-detected electronic sum frequency generation with classical molecular dynamics simulation. J. Chem. Phys. 135, 194705 (2011).

    PubMed  Google Scholar 

  40. 40.

    Sitzmann, E. V. & Eisenthal, K. B. Picosecond dynamics of a chemical reaction at the air–water interface studied by surface second harmonic generation. J. Phys. Chem. 92, 4579–4580 (1988).

    CAS  Google Scholar 

  41. 41.

    Sekiguchi, K., Yamaguchi, S. & Tahara, T. Femtosecond time-resolved electronic sum-frequency generation spectroscopy: a new method to investigate ultrafast dynamics at liquid interfaces. J. Chem. Phys. 128, 114715 (2008).

    PubMed  Google Scholar 

  42. 42.

    Hicks, J. M., Kemnitz, K. & Eisenthal, K. B. Studies of liquid surfaces by second harmonic generation. J. Phys. Chem. 90, 560–562 (1986).

    CAS  Google Scholar 

  43. 43.

    Rao, Y., Subir, M., McArthur, E. A., Turro, N. J. & Eisenthal, K. B. Organic ions at the air/water interface. Chem. Phys. Lett. 477, 241–244 (2009).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI grants JP25104005 and JP18H05265. R.K. acknowledges support form the Special Postdoctoral Researchers (SPDR) programme of RIKEN.

Author information

Affiliations

Authors

Contributions

R.K., S.N. and T.T. designed the research. R.K. performed the experiment and analysed the data. R.K., S.N. and T.T. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Tahei Tahara.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Robert Walker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and note.

Supplementary Data

Pump power dependence of transient signals and spectral data.

Supplementary Data

Spectral data.

Supplementary Data

Time profiles.

Supplementary Data

Spectral data.

Source data

Source Data Fig. 2

Spectral data.

Source Data Fig. 3

Spectral data.

Source Data Fig. 4

Spectral data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kusaka, R., Nihonyanagi, S. & Tahara, T. The photochemical reaction of phenol becomes ultrafast at the air–water interface. Nat. Chem. 13, 306–311 (2021). https://doi.org/10.1038/s41557-020-00619-5

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing