Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Nuclear spin conservation enables state-to-state control of ultracold molecular reactions

Abstract

Quantum-state control of reactive systems has enabled microscopic probes of underlying interaction potentials and the alteration of reaction rates using quantum statistics. However, extending such control to the quantum states of reaction outcomes remains challenging. Here, we realize this goal by utilizing the conservation of nuclear spins throughout the reaction. Using resonance-enhanced multiphoton ionization spectroscopy to investigate the products formed in bimolecular reactions between ultracold KRb molecules we find that the system retains a near-perfect memory of the reactants’ nuclear spins, manifested as a strong parity preference for the rotational states of the products. We leverage this effect to alter the occupation of these product states by changing the coherent superposition of initial nuclear spin states with an external magnetic field. In this way, we are able to control both the inputs and outputs of a reaction with quantum-state resolution. The techniques demonstrated here open up the possibilities to study quantum entanglement between reaction products and ultracold reaction dynamics at the state-to-state level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Probing the behaviour of nuclear spins in reactions between KRb molecules.
Fig. 2: Rotational state occupation of 40K2 products in a 30 G magnetic field.
Fig. 3: Effect of an external magnetic field on the rotational state occupation of 87Rb2 products.
Fig. 4: Continuous control of product rotational state occupations with a magnetic field.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available in Harvard Dataverse with the identifier https://doi.org/10.7910/DVN/VGHISE. Source data are provided with this paper.

Code availability

The computer code used to analyse the data is available from the corresponding authors upon reasonable request.

References

  1. Chang, Y.-P., Horke, D. A., Trippel, S. & Küpper, J. Spatially-controlled complex molecules and their applications. Int. Rev. Phys. Chem. 34, 557–590 (2015).

    CAS  Google Scholar 

  2. Vitanov, N. V., Rangelov, A. A., Shore, B. W. & Bergmann, K. Stimulated raman adiabatic passage in physics, chemistry, and beyond. Rev. Mod. Phys. 89, 015006 (2017).

    Google Scholar 

  3. Shapiro, M. & Brumer, P. Coherent control of molecular dynamics. Rep. Prog. Phys. 66, 224302 (2003).

    Google Scholar 

  4. Lin, J. J., Zhou, J., Shiu, W. & Liu, K. State-specific correlation of coincident product pairs in the F + CD4 reaction. Science 300, 966–969 (2003).

    CAS  PubMed  Google Scholar 

  5. Ashfold, M. N. et al. Imaging the dynamics of gas phase reactions. Phys. Chem. Chem. Phys. 8, 26–53 (2006).

    CAS  PubMed  Google Scholar 

  6. Yang, X. State-to-state dynamics of elementary bimolecular reactions. Annu. Rev. Phys. Chem. 58, 433–459 (2007).

    CAS  PubMed  Google Scholar 

  7. Balakrishnan, N. Perspective: Ultracold molecules and the dawn of cold controlled chemistry. J. Chem. Phys. 145, 150901 (2016).

    CAS  PubMed  Google Scholar 

  8. Toscano, J., Lewandowski, H. & Heazlewood, B. R. Cold and controlled chemical reaction dynamics. Phys. Chem. Chem. Phys. 22, 9180–9194 (2020).

    CAS  PubMed  Google Scholar 

  9. Quéméner, G. & Julienne, P. S. Ultracold molecules under control! Chem. Rev. 112, 4949–5011 (2012).

    PubMed  Google Scholar 

  10. Jankunas, J. & Osterwalder, A. Cold and controlled molecular beams: production and applications. Annu. Rev. Phys. Chem. 66, 241–262 (2015).

    CAS  PubMed  Google Scholar 

  11. Klein, A. et al. Directly probing anisotropy in atom–molecule collisions through quantum scattering resonances. Nat. Phys. 13, 35–38 (2017).

    CAS  Google Scholar 

  12. de Jongh, T. et al. Imaging the onset of the resonance regime in low-energy NO-He collisions. Science 368, 626–630 (2020).

    PubMed  Google Scholar 

  13. Gordon, S. D. et al. Quantum-state-controlled channel branching in cold Ne(3P2)+Ar chemi-ionization. Nat. Chem. 10, 1190–1195 (2018).

    CAS  PubMed  Google Scholar 

  14. Puri, P. et al. Synthesis of mixed hypermetallic oxide BaOCa+ from laser-cooled reagents in an atom-ion hybrid trap. Science 357, 1370–1375 (2017).

    CAS  PubMed  Google Scholar 

  15. Ospelkaus, S. et al. Quantum-state controlled chemical reactions of ultracold potassium-rubidium molecules. Science 327, 853–857 (2010).

    CAS  PubMed  Google Scholar 

  16. Ni, K.-K. et al. Dipolar collisions of polar molecules in the quantum regime. Nature 464, 1324–1328 (2010).

    CAS  PubMed  Google Scholar 

  17. Hall, F. H. & Willitsch, S. Millikelvin reactive collisions between sympathetically cooled molecular ions and laser-cooled atoms in an ion-atom hybrid trap. Phys. Rev. Lett. 109, 233202 (2012).

    PubMed  Google Scholar 

  18. Perreault, W. E., Mukherjee, N. & Zare, R. N. Quantum control of molecular collisions at 1 kelvin. Science 358, 356–359 (2017).

    CAS  PubMed  Google Scholar 

  19. Guo, M. et al. Dipolar collisions of ultracold ground-state bosonic molecules. Phys. Rev. X 8, 041044 (2018).

    CAS  Google Scholar 

  20. Kilaj, A. et al. Observation of different reactivities of para and ortho-water towards trapped diazenylium ions. Nat. Commun. 9, 2096 (2018).

    PubMed  PubMed Central  Google Scholar 

  21. Bohn, J. L., Rey, A. M. & Ye, J. Cold molecules: Progress in quantum engineering of chemistry and quantum matter. Science 357, 1002–1010 (2017).

    CAS  PubMed  Google Scholar 

  22. Brumer, P., Bergmann, K. & Shapiro, M. Identical collision partners in the coherent control of bimolecular reactions. J. Chem. Phys. 113, 2053–2055 (2000).

    CAS  Google Scholar 

  23. Gong, J., Shapiro, M. & Brumer, P. Entanglement-assisted coherent control in nonreactive diatom–diatom scattering. J. Chem. Phys. 118, 2626–2636 (2003).

    CAS  Google Scholar 

  24. Brif, C., Chakrabarti, R. & Rabitz, H. Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010).

    Google Scholar 

  25. Crim, F. F. Bond-selected chemistry: vibrational state control of photodissociation and bimolecular reaction. J. Phys. Chem. 100, 12725–12734 (1996).

    CAS  Google Scholar 

  26. Hundt, P. M., Jiang, B., van Reijzen, M. E., Guo, H. & Beck, R. D. Vibrationally promoted dissociation of water on Ni (111). Science 344, 504–507 (2014).

    CAS  PubMed  Google Scholar 

  27. Bell, M. T. & P. Softley, T. Ultracold molecules and ultracold chemistry. Mol. Phys. 107, 99–132 (2009).

    CAS  Google Scholar 

  28. Levine, R. D. Molecular Reaction Dynamics (Cambridge Univ. Press, 2009).

  29. Quack, M. Detailed symmetry selection rules for reactive collisions. Mol. Phys. 34, 477–504 (1977).

    CAS  Google Scholar 

  30. Oka, T. Nuclear spin selection rules in chemical reactions by angular momentum algebra. J. Mol. Spectrosc. 228, 635–639 (2004).

    CAS  Google Scholar 

  31. Uy, D., Cordonnier, M. & Oka, T. Observation of ortho-para \({{\mathrm{H}}_3}^{+}\) selection rules in plasma chemistry. Phys. Rev. Lett. 78, 3844 (1997).

    CAS  Google Scholar 

  32. Cordonnier, M. et al. Selection rules for nuclear spin modifications in ion-neutral reactions involving \({{\mathrm{H}}_3}^{+}\). J. Chem. Phys. 113, 3181–3193 (2000).

    CAS  Google Scholar 

  33. Fushitani, M. & Momose, T. Nuclear spin selection rule in the photochemical reaction of CH3 in solid parahydrogen. J. Chem. Phys. 116, 10739–10743 (2002).

    CAS  Google Scholar 

  34. Momose, T., Fushitani, M. & Hoshina, H. Chemical reactions in quantum crystals. Int. Rev. Phys. Chem. 24, 533–552 (2005).

    CAS  Google Scholar 

  35. Schramm, B., Bamford, D. & Moore, C. B. Nuclear spin state conservation in photodissociation of formaldehyde. Chem. Phys. Lett. 98, 305–309 (1983).

    CAS  Google Scholar 

  36. Webb, A. D., Dixon, R. N. & Ashfold, M. N. Imaging studies of the photodissociation of H2S+ cations. I. Illustrations of the role of nuclear spin. J. Chem. Phys. 127, 224307 (2007).

    PubMed  Google Scholar 

  37. Mayle, M., Quéméner, G., Ruzic, B. P. & Bohn, J. L. Scattering of ultracold molecules in the highly resonant regime. Phys. Rev. A 87, 012709 (2013).

    Google Scholar 

  38. Christianen, A., Karman, T. & Groenenboom, G. C. A quasiclassical method for calculating the density of states of ultracold collision complexes. Phys. Rev. A 100, 032708 (2019).

    CAS  Google Scholar 

  39. Liu, Y. et al. Photo-excitation of long-lived transient intermediates in ultracold reactions. Nat. Phys. 16, 1132–1136 (2020).

    CAS  Google Scholar 

  40. Atkins, P. W. & Friedman, R. S. Molecular Quantum Mechanics (Oxford Univ. Press, 2011).

  41. Liu, Y., Grimes, D. D., Hu, M.-G. & Ni, K.-K. Probing ultracold chemistry using ion spectrometry. Phys. Chem. Chem. Phys. 22, 4861–4874 (2020).

    CAS  PubMed  Google Scholar 

  42. Ospelkaus, S. et al. Controlling the hyperfine state of rovibronic ground-state polar molecules. Phys. Rev. Lett. 104, 030402 (2010).

    CAS  PubMed  Google Scholar 

  43. Aldegunde, J., Rivington, B. A., Żuchowski, P. S. & Hutson, J. M. Hyperfine energy levels of alkali-metal dimers: Ground-state polar molecules in electric and magnetic fields. Phys. Rev. A 78, 033434 (2008).

    Google Scholar 

  44. Hu, M.-G. et al. Direct observation of bimolecular reactions of ultracold KRb molecules. Science 366, 1111–1115 (2019).

    CAS  PubMed  Google Scholar 

  45. Seto, J. Y., Le Roy, R. J., Verges, J. & Amiot, C. Direct potential fit analysis of the \({X}^{1}{\Sigma }_{g}^{+}\) state of Rb2: Nothing else will do! J. Chem. Phys. 113, 3067–3076 (2000).

    CAS  Google Scholar 

  46. Falke, S., Sherstov, I., Tiemann, E. & Lisdat, C. The \({A}^{1}{\Sigma }_{u}^{+}\) state of K2 up to the dissociation limit. J. Chem. Phys. 125, 224303 (2006).

    PubMed  Google Scholar 

  47. Aikawa, K. et al. Coherent transfer of photoassociated molecules into the rovibrational ground state. Phys. Rev. Lett. 105, 203001 (2010).

    CAS  PubMed  Google Scholar 

  48. Banerjee, J. et al. Direct photoassociative formation of ultracold KRb molecules in the lowest vibrational levels of the electronic ground state. Phys. Rev. A 86, 053428 (2012).

    Google Scholar 

  49. Nesbitt, D. J. Toward state-to-state dynamics in ultracold collisions: Lessons from high-resolution spectroscopy of weakly bound molecular complexes. Chem. Rev. 112, 5062–5072 (2012).

    CAS  PubMed  Google Scholar 

  50. González-Martínez, M. L., Dulieu, O., Larrégaray, P. & Bonnet, L. Statistical product distributions for ultracold reactions in external fields. Phys. Rev. A 90, 052716 (2014).

    Google Scholar 

  51. Park, J. W., Yan, Z. Z., Loh, H., Will, S. A. & Zwierlein, M. W. Second-scale nuclear spin coherence time of ultracold 23Na40K molecules. Science 357, 372–375 (2017).

    CAS  PubMed  Google Scholar 

  52. Gunthardt, C. E., Aardema, M. N., Hall, G. E. & North, S. W. Evidence for lambda doublet propensity in the UV photodissociation of ozone. J. Chem. Phys. 151, 224302 (2019).

    PubMed  Google Scholar 

  53. Lique, F., Honvault, P. & Faure, A. Ortho–para-H2 conversion processes in astrophysical media. Int. Rev. Phys. Chem. 33, 125–149 (2014).

    CAS  Google Scholar 

  54. Li, J. & Kais, S. Entanglement classifier in chemical reactions. Sci. Adv. 5, eaax5283 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Bernath, P. F. Spectra of Atoms and Molecules (Oxford Univ. Press, 2016).

  56. Lemont, S., Giniger, R. & Flynn, G. Radiative lifetime and quenching cross section of the B1Πu state of K2 by time correlated single photon counting using a mode-locked He–Ne laser. J. Chem. Phys. 66, 4509–4515 (1977).

    CAS  Google Scholar 

  57. Engelke, F., Hage, H. & Schühle, U. The K2 \({B}^{1}{\Pi }_{u}-{X}^{1}{\Sigma }_{g}^{+}\) band system. Crossed laser-molecular-beam spectroscopy using doppler-free two-photon ionization. Chem. Phys. Lett. 106, 535–539 (1984).

    CAS  Google Scholar 

  58. Caldwell, C., Engelke, F. & Hage, H. High resolution spectroscopy in supersonic nozzle beams: The Rb2 \({B}^{1}{\Pi }_{u}-{X}^{1}{\Sigma }_{g}^{+}\) band system. Chem. Phys. 54, 21–31 (1980).

    CAS  Google Scholar 

  59. Amiot, C. & Vergès, J. Optical-optical double resonance and Fourier transform spectroscopy: The Rb2 \({B}^{1}{\Pi }_{u}\) electronic state up to the quasibound energy levels. Chem. Phys. Lett. 274, 91–98 (1997).

    CAS  Google Scholar 

  60. Brown, J. M. & Carrington, A. Rotational Spectroscopy of Diatomic Molecules (Cambridge Univ. Press, 2003).

  61. Neyenhuis, B. et al. Anisotropic polarizability of ultracold polar 40K87Rb molecules. Phys. Rev. Lett. 109, 230403 (2012).

    CAS  PubMed  Google Scholar 

  62. Ni, K.-K.A. Quantum Gas of Polar Molecules. PhD thesis, Univ. Colorado Boulder (2009).

  63. Yang, D. et al. A global full-dimensional potential energy surface for the K2Rb2 complex and its lifetime. J. Phys. Chem. Lett. 11, 2605–2610 (2020).

    CAS  PubMed  Google Scholar 

  64. Byrd, J. N., Montgomery, J. A. Jr. & Côté, R. Structure and thermochemistry of K2Rb, KRb2, and K2Rb2. Phys. Rev. A 82, 010502 (2010).

    Google Scholar 

Download references

Acknowledgements

We thank T. Rosenband for providing the code used to calculate the molecular hyperfine structure, J. Bohn for discussions, R. Vexiau for calculations of relevant molecular transitions and N. Hutzler and H. Guo for critical reading of the manuscript. This work is supported by the DOE Young Investigator Program, the David and Lucile Packard Foundation and the NSF through the Harvard-MIT CUA. M.A.N. is supported by a HQI fellowship. G.Q. acknowledges funding from the FEW2MANY-SHIELD Project No. ANR-17-CE30-0015 from Agence Nationale de la Recherche.

Author information

Authors and Affiliations

Authors

Contributions

M.-G.H., Y.L., M.A.N., L.Z. and K.-K.N. carried out the experimental work and data analysis. M.-G.H., G.Q. and O.D. performed the theoretical work. All authors contributed to interpreting the results and writing the manuscript.

Corresponding authors

Correspondence to Ming-Guang Hu or Kang-Kuen Ni.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 The optical setup for generating the REMPI beams.

The 648/674 nm and 532 nm lasers are combined on a dichroic mirror, and are then sent through a dark mask (Thorlabs R1DF100) and an achromatic lens (focal length = 300 mm). The resulting beam profiles in the image plane have a 1 mm outer diameter and a 100 μm inner diameter.

Extended Data Fig. 2 REMPI spectrum for 40K2 product molecules at 30 G.

By scanning the 648 nm laser frequency to search for rotational lines within the \({X}^{1}\mathop{\sum }\nolimits_{g}^{+}\left(v=0,{N}_{{{\rm{K}}}_{2}}\right)\ \to \ {B}^{1}{\prod }_{u}\left({v}^{\prime}=1,{N}_{{{\rm{K}}}_{2}}^{\prime }\right)\) vibronic band, we observe strong \({{\mathrm{K}}_{2}}^{+}\) signals at frequencies corresponding to rotational states with even values of \({N}_{{{\rm{K}}}_{2}}\) (red filled circles), and highly suppressed signals for odd values (black open circles). The ion count for each data point is normalized by the corresponding number of experimental cycles (~ 16); the error bars denote shot noise. For \({N}_{{{\rm{K}}}_{2}}>0\), we drive transitions with \({N}_{{{\rm{K}}}_{2}}^{\prime }-{N}_{{{\rm{K}}}_{2}}=0\) (Q branch), whereas for \({N}_{{{\rm{K}}}_{2}}=0\), we drive the only allowed transition, with \({N}_{{{\rm{K}}}_{2}}^{\prime }-{N}_{{{\rm{K}}}_{2}}=1\) (R branch). Blue dashed lines indicate the predicted transition frequencies. We do not observe any signals at frequencies corresponding to states with \({N}_{{{\rm{K}}}_{2}}>12\). Gaussian fits (black curves) are applied to each signal peak, yielding a typical spectral linewidth (1σ) of ~ 50 MHz.

Source data

Extended Data Fig. 3 REMPI spectrum for 87Rb2 product molecules at 30 G.

The frequency of the 674 nm laser is scanned within the \({X}^{1}\mathop{\sum }\nolimits_{g}^{+}(v=0,{N}_{{{\rm{Rb}}}_{2}})\ \to \ {B}^{1}{\prod }_{u}({v}^{\prime}=4,{N}_{{{\rm{Rb}}}_{2}}^{\prime })\) vibronic band. We observe strong \({{\mathrm{Rb}}_{2}}^{+}\) signals for transitions from odd rotational states (blue filled circles), and highly suppressed signals from even ones (black open circles). The ion count for each data point is normalized by the corresponding number of experimental cycles (~ 16); the error bars denote shot noise. We drive Q branch transitions for \({N}_{{{\rm{Rb}}}_{2}}>0\), and R branch for \({N}_{{{\rm{Rb}}}_{2}}=0\). Blue dashed lines indicate the predicted transition frequencies. We do not observe any signals at frequencies corresponding to states with \({N}_{{{\rm{Rb}}}_{2}}>19\). Gaussian fits (black curves) are applied to each signal peak, yielding a typical spectral linewidth (1σ) of ~ 40 MHz.

Source data

Extended Data Fig. 4 REMPI spectrum for 87Rb2 product molecules at 5 G.

The frequency of the 674 nm laser is scanned within the \({X}^{1}\mathop{\sum }\nolimits_{g}^{+}(v=0,{N}_{{{\rm{Rb}}}_{2}})\ \to \ {B}^{1}{\prod }_{u}({v}^{\prime}=6,{N}_{{{\rm{Rb}}}_{2}}^{\prime })\) vibronic band. We observe strong \({{\mathrm{Rb}}_{2}}^{+}\) signals for transitions from both even (red filled circles) and odd (blue filled circles) rotational states. The ion count for each data point is normalized by the corresponding number of experimental cycles (~ 20); the error bars denote shot noise. We drive Q branch transitions for \({N}_{{{\rm{Rb}}}_{2}}>0\), and R branch for \({N}_{{{\rm{Rb}}}_{2}}=0\). Blue dashed lines indicate the predicted transition frequencies. We do not observe any signals at frequencies corresponding to states with \({N}_{{{\rm{Rb}}}_{2}}>20\). Gaussian fits (black curves) are applied to each signal peak, yielding a typical spectral linewidth (1σ) of ~ 40 MHz.

Source data

Source data

Source Data Fig. 2

Product State Distribution Source Data of \({{\mathrm{K}}_{2}}^{+}\)

Source Data Fig. 3

Product State Distribution Source Data of \({{\mathrm{Rb}}_{2}}^{+}\)

Source Data Fig. 4

B Field Control Source Data

Source Data Extended Data Fig. 2

REMPI Spectrum Source Data of \({{\mathrm{K}}_{2}}^{+}\) at 30 G

Source Data Extended Data Fig. 3

REMPI Spectrum Source Data of \({{\mathrm{Rb}}_{2}}^{+}\) at 30 G

Source Data Extended Data Fig. 4

REMPI Spectrum Source Data of \({{\mathrm{Rb}}_{2}}^{+}\) at 5 G

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, MG., Liu, Y., Nichols, M.A. et al. Nuclear spin conservation enables state-to-state control of ultracold molecular reactions. Nat. Chem. 13, 435–440 (2021). https://doi.org/10.1038/s41557-020-00610-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00610-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing