Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mimicking oxidative radical cyclizations of lignan biosynthesis using redox-neutral photocatalysis


Oxidative cyclizations create many unique chemical structures that are characteristic of biologically active natural products. Many of these reactions are catalysed by ‘non-canonical’ or ‘thwarted’ iron oxygenases and appear to involve long-lived radicals. Mimicking these biosynthetic transformations with chemical equivalents has been a long-standing goal of synthetic chemists but the fleeting nature of radicals, particularly under oxidizing conditions, makes this challenging. Here we use redox-neutral photocatalysis to generate radicals that are likely to be involved in the biosynthesis of lignan natural products. We present the total syntheses of highly oxidized dibenzocyclooctadienes, which feature densely fused, polycyclic frameworks that originate from a common radical progenitor. We show that multiple factors control the fate of the proposed biosynthetic radicals, as they select between 5- or 11-membered ring cyclizations and a number of different terminating events. Our syntheses create new opportunities to explore the medicinal properties of these natural products, while shedding light on their biosynthetic origin.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Proposed biosynthesis of DBCOD lignans and a redox-neutral photocatalytic approach to mimic non-canonical oxidative cyclizations.
Fig. 2: Retrosynthetic analysis of a stage 2 DBCOD.
Fig. 3: Forward synthesis of stage 2 DBCODs.
Fig. 4: The atroposelective Suzuki cyclization proceeds by a stereoselective transmetalation that relays the point chirality at C6 and C9 of 22 into the P-configured axis of chirality in 23.
Fig. 5: Synthesis of kadsulignan E and heteroclitin J by 5-membered ring spirocyclization.
Fig. 6: Synthesis of kadsuphilin N by 11-membered ring cyclization.

Data availability

All data generated or analysed during this study, including characterization data for all compounds produced in this work, are included in this published article and its Supplementary Information files. Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1916278 (22), 1916279 (S17), 1916280 (8) and 2026509 (46). Copies of the data can be obtained free of charge via


  1. 1.

    Xu, L. J., Liu, H. T., Peng, Y. & Xiao, P.-G. A preliminary pharmacophylogenetic investigation in Schisandraceae. J. Syst. Evol. 46, 692–723 (2008).

    Google Scholar 

  2. 2.

    Panossian, A. & Wikman, G. Pharmacology of Schisandra chinensis Bail.: An overview of Russian research and uses in medicine. J. Ethnopharmacol. 118, 183–212 (2008).

    PubMed  Google Scholar 

  3. 3.

    Liu, J. et al. Genus Kadsura, a good source with considerable characteristic chemical constituents and potential bioactivities. Phytomedicine 21, 1092–1097 (2014).

    CAS  PubMed  Google Scholar 

  4. 4.

    Chang, J., Reiner, J. & Xie, J. Progress on the chemistry of dibenzocyclooctadiene lignans. Chem. Rev. 105, 4581–4609 (2005).

    CAS  PubMed  Google Scholar 

  5. 5.

    Han, Y.-S. et al. Identification of a dibenzocyclooctadiene lignan as a HIV-1 non-nucleoside reverse transcriptase inhibitor. Antivir. Chem. Chemother. 24, 28–38 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Zhu, P., Li, J., Fu, X. & Yu, Z. Schisandra fruits for the management of drug-induced liver injury in China: A review. Phytomedicine 59, 152760 (2019).

    PubMed  Google Scholar 

  7. 7.

    Lau, W. & Sattely, E. S. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone. Science 349, 1224–1228 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Davin, L. B. et al. Dissection of lignin macromolecular configuration and assembly: Comparison to related biochemical processes in allyl/propenyl phenol and lignan biosynthesis. Nat. Prod. Rep. 25, 1015–1090 (2008).

    CAS  PubMed  Google Scholar 

  9. 9.

    Ikeya, Y., Taguchi, H. & Yosioka, I. The constituents of Schizandra chinensis BAILL. The structures of two new lignans, pre-gomisin and gomisin. J. Chem. Pharm. Bull. 26, 682–684 (1978).

    CAS  Google Scholar 

  10. 10.

    Lin, Y.-C. et al. New lignans from the leaves and stems of Kadsura philippinensis. Molecules 18, 6573–6583 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Liu, J. & Huang, M. Kadsulignans E-G from Kadsura longipedunculata. Phytochemistry 31, 957–960 (1992).

    CAS  Google Scholar 

  12. 12.

    Xu, L.-J., Peng, Y., Chen, S.-B., Chen, S.-L. & Xiao, P.-G. Four new lignans from Kadsura heteroclita. Heterocycles 71, 941–947 (2007).

    CAS  Google Scholar 

  13. 13.

    Shen, Y.-C., Lin, Y.-C., Cheng, Y.-B., Kuo, Y.-H. & Liaw, C.-C. Taiwankadsurins A, B, and C, three new C19 homolignans from Kadsura philippinensis. Org. Lett. 7, 5297–5300 (2005).

    CAS  PubMed  Google Scholar 

  14. 14.

    Tang, M.-C., Zou, Y., Watanabe, K., Walsh, C. T. & Tang, Y. Oxidative cyclization in natural product biosynthesis. Chem. Rev. 117, 5226–5333 (2017).

    CAS  PubMed  Google Scholar 

  15. 15.

    Walsh, C. T. & Moore, B. S. Enzymatic cascade reactions in biosynthesis. Angew. Chem. Int. Ed. 58, 6846–6879 (2019).

    CAS  Google Scholar 

  16. 16.

    Huang, X. & Groves, J. T. Oxygen activation and radical transformations in heme proteins and metalloporphyrins. Chem. Rev. 118, 2491–2553 (2018).

    CAS  PubMed  Google Scholar 

  17. 17.

    Okada, K., Okamoto, K. & Oda, M. A new and practical method of decarboxylation: photosensitized decarboxylation of N-acyloxyphthalimides via electron-transfer mechanism. J. Am. Chem. Soc. 110, 8736–8738 (1988).

    CAS  Google Scholar 

  18. 18.

    Okada, K., Okamoto, K., Morita, N., Okubo, K. & Oda, M. Photosensitized decarboxylative Michael addition through N-(acyloxy)phthalimides via an electron-transfer mechanism. J. Am. Chem. Soc. 113, 9401–9402 (1991).

    CAS  Google Scholar 

  19. 19.

    Prier, C. K., Rankic, D. A. & MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 113, 5322–5363 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Shaw, M. H., Twilton, J. & MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 81, 6898–6926 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Gong, W. & RajanBabu, T. V. Conformation and reactivity in dibenzocyclooctadienes (DBCOD). A general approach to the total synthesis of fully substituted DBCOD lignans via borostannylative cyclization of α,ω-diynes. Chem. Sci. 4, 3979–3985 (2013).

    CAS  Google Scholar 

  22. 22.

    Bringmann, G., Gulder, T., Gulder, T. A. M. & Breuning, M. Atroposelective total synthesis of axially chiral biaryl natural products. Chem. Rev. 111, 563–639 (2011).

    CAS  PubMed  Google Scholar 

  23. 23.

    DeMartino, M. P. The Design and Development of Oxidative Enolate Heterocoupling and Application Toward the Total Synthesis of the Taiwankadsurins. PhD thesis, The Scripps Research Institute (2008).

  24. 24.

    Tomioka, K., Ishiguro, T., Iitaka, Y. & Koga, K. Asymmetric total synthesis of natural (–)- and unnatural (+)-steganacin: Determination of the absolute configuration of natural antitumor steganacin. Tetrahedron 40, 1303–1312 (1984).

    CAS  Google Scholar 

  25. 25.

    Coleman, R. S., Gurrala, S. R., Mitra, S. & Raao, A. Asymmetric total synthesis of dibenzocyclooctadiene lignan natural products. J. Org. Chem. 70, 8932–8941 (2005).

    CAS  PubMed  Google Scholar 

  26. 26.

    Belokon, Y. N. et al. Mechanism-guided development of VO(salen)X complexes as catalysts for the asymmetric synthesis of cyanohydrin trimethylsilyl ethers. Chem. Eur. J. 15, 2148–2165 (2009).

    CAS  PubMed  Google Scholar 

  27. 27.

    Van Draanen, N. A., Arseniyadis, S., Crimmins, M. T. & Heathcock, C. H. Protocols for the preparation of each of the four possible stereoisomeric α-alkyl-β-hydroxy carboxylic acids from a single chiral aldol reagent. J. Org. Chem. 56, 2499–2506 (1991).

    Google Scholar 

  28. 28.

    Galobardes, M. et al. Enolization of chiral α-silyloxy ketones with dicyclohexylchloroborane. Application to stereoselective aldol reactions. Org. Lett. 2, 2599–2602 (2000).

    CAS  PubMed  Google Scholar 

  29. 29.

    Aullón, G., Romea, P. & Urpí, F. Substrate-controlled aldol reactions from chiral α-hydroxy ketones. Synthesis 49, 484–503 (2017).

    Google Scholar 

  30. 30.

    Bartoli, G., Bosco, M., Di Martino, E., Marcantoni, E. & Sambri, L. Highly stereoselective and efficient addition of organocerium reagents to syn-β-alkyl-β-hydroxy-α-methyl ketones by way of their titanium alkoxides − synthesis of complex 1,3-diol units with three stereodefined centres. Eur. J. Org. Chem. 2001, 2901–2909 (2001).

    Google Scholar 

  31. 31.

    Alam, A., Takaguchi, Y. & Tsuboi, S. 1,3-Dibromo-5,5-dimethylhydantoin, a useful reagent for ortho-monobromination of phenols and polyphenols. J. Fac. Environ. Sci. Technol., Okayama Univ. 10, 105–109 (2005).

    CAS  Google Scholar 

  32. 32.

    Huang, Z. & Lumb, J.-P. Phenol-directed C–H functionalization. ACS Catal. 9, 521–555 (2019).

    CAS  Google Scholar 

  33. 33.

    Kinzel, T., Zhang, Y. & Buchwald, S. L. A new palladium precatalyst allows for the fast Suzuki−Miyaura coupling reactions of unstable polyfluorophenyl and 2-heteroaryl boronic acids. J. Am. Chem. Soc. 132, 14073–14075 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Patel, N. D. et al. Computationally assisted mechanistic investigation and development of Pd-catalyzed asymmetric Suzuki–Miyaura and Negishi cross-coupling reactions for tetra-ortho-substituted biaryl synthesis. ACS Catal. 8, 10190–10209 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Thomas, A. A. & Denmark, S. E. Pre-transmetalation intermediates in the Suzuki-Miyaura reaction revealed: The missing link. Science 352, 329–332 (2016).

    CAS  PubMed  Google Scholar 

  36. 36.

    Carrow, B. P. & Hartwig, J. F. Distinguishing between pathways for transmetalation in Suzuki−Miyaura reactions. J. Am. Chem. Soc. 133, 2116–2119 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Lawlor, D. A. et al. Hyperaromatic stabilization of arenium ions: cyclohexa- and cycloheptadienyl cations—experimental and calculated stabilities and ring currents. J. Am. Chem. Soc. 133, 19729–19742 (2011).

    CAS  PubMed  Google Scholar 

  38. 38.

    Tlahuext-Aca, A., Garza-Sanchez, R. A. & Glorius, F. Multicomponent oxyalkylation of styrenes enabled by hydrogen-bond-assisted photoinduced electron transfer. Angew. Chem. Int. Ed. 56, 3708–3711 (2017).

    CAS  Google Scholar 

  39. 39.

    Pratsch, G., Lackner, G. L. & Overman, L. E. Constructing quaternary carbons from N-(acyloxy)phthalimide precursors of tertiary radicals using visible-light photocatalysis. J. Org. Chem. 80, 6025–6036 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Pham, P. V., Nagib, D. A. & MacMillan, D. W. C. Photoredox catalysis: A mild, operationally simple approach to the synthesis of α-trifluoromethyl carbonyl compounds. Angew. Chem. Int. Ed. 50, 6119–6122 (2011).

    CAS  Google Scholar 

  41. 41.

    Firn, R. D. & Jones, C. G. Natural products – a simple model to explain chemical diversity. Nat. Prod. Rep. 20, 382–391 (2003).

    CAS  PubMed  Google Scholar 

  42. 42.

    Yet, L. in Privileged Structures in Drug Discovery (ed. Yet, L.) Ch. 4, 83–154 (Wiley, 2018).

  43. 43.

    Genovino, J., Lütz, S., Sames, D. & Touré, B. B. Complementation of biotransformations with chemical C–H oxidation: copper-catalyzed oxidation of tertiary amines in complex pharmaceuticals. J. Am. Chem. Soc. 135, 12346–12352 (2013).

    CAS  PubMed  Google Scholar 

  44. 44.

    Green, S. P. & Whiting, D. A. New carbon radical chemistry as a model for the biogenesis of the interiorin/kadsulignan type of dibenzocyclooctadiene lignan. J. Chem. Soc., Perkin Trans. 1, 193–202 (1998).

    Google Scholar 

  45. 45.

    Coleman, R. S., Guernon, J. M. & Roland, J. T. Synthesis of the spirocyclic cyclohexadienone ring system of the schiarisanrins. Org. Lett. 2, 277–280 (2000).

    CAS  PubMed  Google Scholar 

  46. 46.

    Ikeya, Y., Taguchi, H. & Iitaka, Y. The constituents of Schizandra chinensis Baill. The structure of a new lignan, gomisin D. Tetrahedron Lett. 17, 1359–1362 (1976).

    Google Scholar 

  47. 47.

    Yang, G.-Y. et al. Bioactive lignans from the leaves and stems of Schisandra wilsoniana. Nat. Prod. Commun. 8, 467–470 (2013).

    CAS  PubMed  Google Scholar 

  48. 48.

    Liu, J., Huang, M. & Zhou, H. Kadsulignan C and D, two novel lignans from Kadsura longipedunculata. Can. J. Chem. 69, 1403–1407 (1991).

    CAS  Google Scholar 

  49. 49.

    Wang, G.-Z., Shang, R. & Fu, Y. Irradiation-induced palladium-catalyzed decarboxylative heck reaction of aliphatic N-(acyloxy)phthalimides at room temperature. Org. Lett. 20, 888–891 (2018).

    CAS  PubMed  Google Scholar 

  50. 50.

    Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51.

    Satoshi, I., Koji, K., Shigeru, I. & Teruaki, M. A new and facile method for the direct preparation of α-hydroxycarboxylic acid esters from α,β-unsaturated carboxylic acid esters with molecular oxygen and phenylsilane catalyzed by bis(dipivaloylmethanato)manganese(ii) complex. Chem. Lett. 19, 1869–1872 (1990).

    Google Scholar 

  52. 52.

    Newcomb, M. Competition methods and scales for alkyl radical reaction kinetics. Tetrahedron 49, 1151–1176 (1993).

    CAS  Google Scholar 

  53. 53.

    Shen, Y.-C. et al. Kadsuphilols A-H, oxygenated lignans from Kadsura philippinensis. J. Nat. Prod. 70, 1139–1145 (2007).

    CAS  PubMed  Google Scholar 

  54. 54.

    Wertjes, W. C., Southgate, E. H. & Sarlah, D. Recent advances in chemical dearomatization of nonactivated arenes. Chem. Soc. Rev. 47, 7996–8017 (2018).

    CAS  PubMed  Google Scholar 

  55. 55.

    Flynn, A. R., McDaniel, K. A., Hughes, M. E., Vogt, D. B. & Jui, N. T. Hydroarylation of arenes via reductive radical-polar crossover. J. Am. Chem. Soc. 142, 9163–9168 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. 56.

    Smith, J. M., Harwood, S. J. & Baran, P. S. Radical retrosynthesis. Acc. Chem. Res. 51, 1807–1817 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references


We thank T. Maris from the University of Montreal for help with X-ray crystallography and N. Moitessier and J. Plescia from McGill University for help with ozonolysis. Financial support was provided by the Natural Sciences and Engineering Research Council of Canada (Discovery Grant to J.-P.L.), the Fonds de Recherche du Québec Nature et Technologies (FRQNT) (Team Grant to J.-P.L.) and the FRQNT Center for Green Chemistry and Catalysis.

Author information




Z.H. and J.-P.L. conceived and designed the experiments. Z.H. performed the experiments. Z.H. and J.-P.L. analysed the data. Z.H. and J.-P.L. co-wrote the manuscript.

Corresponding author

Correspondence to Jean-Philip Lumb.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

The Supplementary Information contains Supplementary Figs. 1–14, Discussion and Tables 1–12 associated with the manuscript, as well as procedural details for and characterization data of all newly prepared compounds, including their NMR spectra and, where appropriate, their X-ray data

Supplementary Data 1

Crystallographic data for compound 8. CCDC reference 1916280

Supplementary Data 2

Crystallographic data for compound 22. CCDC reference 1916278

Supplementary Data 3

Crystallographic data for compound 46. CCDC reference 2026509

Supplementary Data 4

Crystallographic data for compound S17. CCDC reference 1916279

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Lumb, JP. Mimicking oxidative radical cyclizations of lignan biosynthesis using redox-neutral photocatalysis. Nat. Chem. 13, 24–32 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing