Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer

Abstract

The efficient conversion of electricity to chemicals is needed to mitigate the intermittency of renewable energy sources. Driving these electrochemical conversions at useful rates requires not only fast electrode kinetics, but also rapid mass and ion transport. However, little is known about the effect of local environments on ionic flows in solid polymer electrolytes. Here, we show that it is possible to measure and manipulate the local pH in membrane electrolysers with a resolution of tens of nanometres. In bipolar-membrane-based gas-fed CO2 electrolysers, the acidic environment of the cation exchange layer results in low CO2 reduction efficiency. By using ratiometric indicators and layer-by-layer polyelectrolyte assembly, the local pH was measured and controlled within an ~50-nm-thick weak-acid layer. The weak-acid layer suppressed the competing hydrogen evolution reaction without affecting CO2 reduction. This method of probing and controlling the local membrane environment may be useful in devices such as electrolysers, fuel cells and flow batteries, as well as in operando studies of ion distributions within polymer electrolytes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: An acidic cathode environment leads to low FE for CO2 reduction in a BPM-based electrolyser.
Fig. 2: Modification of the BPM by LBL assembly.
Fig. 3: Attaching pH-responsive dyes to PAH and pH calibration.
Fig. 4: Measurement of the local pH in the LBL film on the modified BPM.
Fig. 5: Electrochemical properties of the LBL-modified BPM and Nafion BPM.

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are included in this paper and its Supplementary Information and Source Data files. Source data are provided with this paper.

References

  1. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    PubMed  Google Scholar 

  2. Lewis, N. S. & Nocera, D. G. Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    CAS  PubMed  Google Scholar 

  3. Yan, Z., Hitt, J. L., Turner, J. A. & Mallouk, T. E. Renewable electricity storage using electrolysis. Proc. Natl Acad. Sci. USA 117, 12558–12563 (2020).

    CAS  PubMed  Google Scholar 

  4. Mogensen, M. B. et al. Reversible solid-oxide cells for clean and sustainable energy. Clean Energy 3, 175–201 (2019).

    Google Scholar 

  5. Hori, Y. in Modern Aspects of Electrochemistry (eds Vayenas, C. G. et al.) 89–189 (Springer, 2008).

  6. Weng, L. C., Bell, A. T. & Weber, A. Z. Modeling gas-diffusion electrodes for CO2 reduction. Phys. Chem. Chem. Phys. 20, 16973–16984 (2018).

    CAS  PubMed  Google Scholar 

  7. Delacourt, C., Ridgway, P. L., Kerr, J. B. & Newman, J. Design of an electrochemical cell making syngas (CO + H2) from CO2 and H2O reduction at room temperature. J. Electrochem. Soc. 155, B42–B49 (2008).

    CAS  Google Scholar 

  8. Vennekoetter, J. B., Sengpiel, R. & Wessling, M. Beyond the catalyst: how electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem. Eng. J. 364, 89–101 (2019).

    CAS  Google Scholar 

  9. Ma, S. et al. One-step electrosynthesis of ethylene and ethanol from CO2 in an alkaline electrolyzer. J. Power Sources 301, 219–228 (2016).

    CAS  Google Scholar 

  10. Dinh, C. T. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 360, 783–787 (2018).

    CAS  PubMed  Google Scholar 

  11. Li, Y. C. et al. Bipolar membranes inhibit product crossover in CO2 electrolysis cells. Adv. Sustain. Syst. 2, 1700187 (2018).

    Google Scholar 

  12. Ünlü, M., Zhou, J. & Kohl, P. A. Hybrid anion and proton exchange membrane fuel cells. J. Phys. Chem. C 113, 11416–11423 (2009).

    Google Scholar 

  13. Vargas‐Barbosa, N. M., Geise, G. M., Hickner, M. A. & Mallouk, T. E. Assessing the utility of bipolar membranes for use in photoelectrochemical water-splitting cells. ChemSusChem 7, 3017–3020 (2014).

    PubMed  Google Scholar 

  14. Luo, J. et al. Bipolar membrane-assisted solar water splitting in optimal pH. Adv. Energy Mater. 6, 1600100 (2016).

    Google Scholar 

  15. Sun, K. et al. A stabilized, intrinsically safe, 10% efficient, solar-driven water-splitting cell incorporating earth-abundant electrocatalysts with steady-state pH gradients and product separation enabled by a bipolar membrane. Adv. Energy Mater. 6, 1600379 (2016).

    Google Scholar 

  16. McDonald, M. B., Ardo, S., Lewis, N. S. & Freund, M. S. Use of bipolar membranes for maintaining steady-state pH gradients in membrane-supported, solar-driven water splitting. ChemSusChem 7, 3021–3027 (2014).

    CAS  PubMed  Google Scholar 

  17. McDonald, M. B., Freund, M. S. & Hammond, P. T. Catalytic, conductive bipolar membrane interfaces through layer-by-layer deposition for the design of membrane-integrated artificial photosynthesis systems. ChemSusChem 10, 4599–4609 (2017).

    CAS  PubMed  Google Scholar 

  18. Li, Y. C. et al. Electrolysis of CO2 to syngas in bipolar membrane-based electrochemical cells. ACS Energy Lett. 1, 1149–1153 (2016).

    CAS  Google Scholar 

  19. Salvatore, D. A. et al. Electrolysis of gaseous CO2 to CO in a flow cell with a bipolar membrane. ACS Energy Lett. 3, 149–154 (2018).

    CAS  Google Scholar 

  20. Yang, H., Kaczur, J. J., Sajjad, S. D. & Masel, R. I. Electrochemical conversion of CO2 to formic acid utilizing SustainionTM membranes. J. CO2 Util. 20, 208–217 (2017).

    CAS  Google Scholar 

  21. Xia, C. et al. Continuous production of pure liquid fuel solutions via electrocatalytic CO2 reduction using solid-electrolyte devices. Nat. Energy 4, 776–785 (2019).

    CAS  Google Scholar 

  22. Peterson, A. A., Abild-Pedersen, F., Studt, F., Rossmeisl, J. & Nørskov, J. K. How copper catalyzes the electroreduction of carbon dioxide into hydrocarbon fuels. Energy Environ. Sci. 3, 1311–1315 (2010).

    CAS  Google Scholar 

  23. Kortlever, R., Shen, J., Schouten, K. J. P., Calle-Vallejo, F. & Koper, M. T. M. Catalysts and reaction pathways for the electrochemical reduction of carbon dioxide. J. Phys. Chem. Lett. 6, 4073–4082 (2015).

    CAS  PubMed  Google Scholar 

  24. Hansen, H. A., Varley, J. B., Peterson, A. A. & Nørskov, J. K. Understanding trends in the electrocatalytic activity of metals and enzymes for CO2 reduction to CO. J. Phys. Chem. Lett. 4, 388–392 (2013).

    CAS  PubMed  Google Scholar 

  25. Yang, K., Kas, R. & Smith, W. A. In-situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction. J. Am. Chem. Soc. 141, 15891–15900 (2019).

    PubMed  PubMed Central  Google Scholar 

  26. Dunwell, M. et al. Examination of near-electrode concentration gradients and kinetic impacts on the electrochemical reduction of CO2 using surface-enhanced infrared spectroscopy. ACS Catal. 8, 3999–4008 (2018).

    CAS  Google Scholar 

  27. Ryu, J. & Surendranath, Y. Tracking electrical fields at the Pt/H2O interface during hydrogen catalysis. J. Am. Chem. Soc. 141, 15524–15531 (2019).

    PubMed  PubMed Central  Google Scholar 

  28. Ryu, J., Wuttig, A. & Surendranath, Y. Quantification of interfacial pH variation at molecular length scales using a concurrent non-Faradaic reaction. Angew. Chem. Int. Ed. 57, 9300–9304 (2018).

    CAS  Google Scholar 

  29. Han, J. & Burgess, K. Fluorescent indicators for intracellular pH. Chem. Rev. 110, 2709–2728 (2010).

    CAS  PubMed  Google Scholar 

  30. Kang, Z. et al. Investigation of thin/well-tunable liquid/gas diffusion layers exhibiting superior multifunctional performance in low-temperature electrolytic water splitting. Energy Environ. Sci. 10, 166–175 (2017).

    CAS  Google Scholar 

  31. Yan, Z. et al. The balance of electric field and interfacial catalysis in promoting water dissociation in bipolar membranes. Energy Environ. Sci. 11, 2235–2245 (2018).

    CAS  Google Scholar 

  32. Li, Y. C. et al. CO2 electroreduction from carbonate electrolyte. ACS Energy Lett. 4, 1427–1431 (2019).

    CAS  Google Scholar 

  33. Helfferich, F. G. Ion Exchange (Courier Corporation, 1995).

  34. Decher, G. Fuzzy nanoassemblies: toward layered polymeric multicomposites. Science 277, 1232–1237 (1997).

    CAS  Google Scholar 

  35. Abdu, S., Martí-Calatayud, M. C., Wong, J. E., García-Gabaldón, M. & Wessling, M. Layer-by-layer modification of cation exchange membranes controls ion selectivity and water splitting. ACS Appl. Mater. Interfaces 6, 1843–1854 (2014).

    CAS  PubMed  Google Scholar 

  36. White, N., Misovich, M., Yaroshchuk, A. & Bruening, M. L. Coating of Nafion membranes with polyelectrolyte multilayers to achieve high monovalent/divalent cation electrodialysis selectivities. ACS Appl. Mater. Interfaces 7, 6620–6628 (2015).

    CAS  PubMed  Google Scholar 

  37. Abdu, S. et al. Catalytic polyelectrolyte multilayers at the bipolar membrane interface. ACS Appl. Mater. Interfaces 5, 10445–10455 (2013).

    CAS  PubMed  Google Scholar 

  38. Lin, H.-J., Szmacinski, H. & Lakowicz, J. R. Lifetime-based pH sensors: indicators for acidic environments. Anal. Biochem. 269, 162–167 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Johnson, I. & Spence, M. (eds) Molecular Probes Handbook: A Guide to Fluorescent Probes and Labelling Technologies 11th edn (Life Technologies, 2010).

  40. Kaschak, D. M. et al. Photoinduced energy and electron transfer reactions in lamellar polyanion/polycation thin films: toward an inorganic ‘leaf’. J. Am. Chem. Soc. 121, 3435–3445 (1999).

    CAS  Google Scholar 

  41. Nikonenko, V. V. & Kozmai, A. E. Electrical equivalent circuit of an ion-exchange membrane system. Electrochim. Acta 56, 1262–1269 (2011).

    CAS  Google Scholar 

  42. Zamel, N. The catalyst layer and its dimensionality—a look into its ingredients and how to characterize their effects. J. Power Sources 309, 141–159 (2016).

    CAS  Google Scholar 

  43. Huang, J., Li, Z. & Zhang, J. Review of characterization and modeling of polymer electrolyte fuel cell catalyst layer: the blessing and curse of ionomer. Front. Energy 11, 334–364 (2017).

    Google Scholar 

  44. Wuttig, A., Yaguchi, M., Motobayashi, K., Osawa, M. & Surendranath, Y. Inhibited proton transfer enhances Au-catalyzed CO2-to-fuels selectivity. Proc. Natl Acad. Sci. USA 113, E4585–E4593 (2016).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Z.Y. thanks L. Ren for assisting with sample preparation. This work was supported by the Office of Basic Energy Sciences, Division of Chemical Sciences, Geosciences and Energy Bioscience, Department of Energy (contract no. SC-0019781) and by the Canadian Institute for Advanced Research. J.L.H. acknowledges support as a graduate fellow of the Vagelos Institute for Energy Science and Technology at the University of Pennsylvania. Anion exchange membrane synthesis was supported by the DOE-NETL University Coalition for Fossil Energy Research (UCFER) (grant no. DE-FE0026825, subaward 0001-PSU-DOE-6825).

Author information

Authors and Affiliations

Authors

Contributions

Z.Y., M.A.H. and T.E.M. designed the study. Z.Y. carried out the experimental work with assistance from J.L.H. and Z.Z. Z.Y. and T.E.M. drafted the manuscript, which was reviewed and edited by all authors.

Corresponding author

Correspondence to Thomas E. Mallouk.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Discussion.

Source data

Source Data Fig. 1

Statistical source data for Fig. 1b.

Source Data Fig. 2

Statistical source data for Fig. 2b.

Source Data Fig. 4

Statistical source data for Fig. 4.

Source Data Fig. 5

Statistical source data for Fig. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, Z., Hitt, J.L., Zeng, Z. et al. Improving the efficiency of CO2 electrolysis by using a bipolar membrane with a weak-acid cation exchange layer. Nat. Chem. 13, 33–40 (2021). https://doi.org/10.1038/s41557-020-00602-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00602-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing