Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue

Abstract

Photoinduced charge-transfer is an important process in nature and technology and is responsible for the emergence of exotic functionalities, such as magnetic order for cyanide-bridged bimetallic coordination networks. Despite its broad interest and intensive developments in chemistry and material sciences, the atomic-scale description of the initial photoinduced process, which couples intermetallic charge-transfer and spin transition, has been debated for decades; it has been beyond reach due to its extreme speed. Here we study this process in a prototype cyanide-bridged CoFe system by femtosecond X-ray and optical absorption spectroscopies, enabling the disentanglement of ultrafast electronic and structural dynamics. Our results demonstrate that it is the spin transition that occurs first on the Co site within ~50 fs, and it is this that drives the subsequent Fe-to-Co charge-transfer within ~200 fs. This study represents a step towards understanding and controlling charge-transfer-based functions using light.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: CoFe PBA and X-ray absorption fingerprints of the transformation.
Fig. 2: Disentangling ST and CT dynamics in real time.
Fig. 3: ST induces CT.

Similar content being viewed by others

Data availability

The datasets generated and analysed during the current study are available in the HAL repository at https://hal.archives-ouvertes.fr/hal-02996531 or from the authors upon request.

References

  1. McCusker, J. K. Electronic structure in the transition metal block and its implications for light harvesting. Science 363, 484–488 (2019).

    Article  CAS  Google Scholar 

  2. Canton, S. E. et al. Visualizing the non-equilibrium dynamics of photoinduced intramolecular electron transfer with femtosecond X-ray pulses. Nat. Commun. 6, 6359 (2015).

    Article  CAS  Google Scholar 

  3. Sato, O., Iyoda, T., Fujishima, A. & Hashimoto, K. Photoinduced magnetization of a cobalt-iron cyanide. Science 272, 704–705 (1996).

    Article  CAS  Google Scholar 

  4. Ohkoshi, S. & Tokoro, H. Photomagnetism in cyano-bridged bimetal assemblies. Acc. Chem. Res. 45, 1749–1758 (2012).

    Article  CAS  Google Scholar 

  5. Ferlay, S., Mallah, T., Ouahes, R., Veillet, P. & Verdaguer, M. A room-temperature organometallic magnet based on Prussian blue. Nature 378, 701–703 (1995).

    Article  CAS  Google Scholar 

  6. Liedy, F. et al. Vibrational coherences in manganese single-molecule magnets after ultrafast photoexcitation. Nat. Chem. 12, 452–458 (2020).

    Article  CAS  Google Scholar 

  7. Collet, E. et al. Laser-induced ferroelectric structural order in an organic charge-transfer crystal. Science 300, 612–615 (2003).

    Article  CAS  Google Scholar 

  8. Chollet, M. et al. Gigantic photoresponse in 1/4-filled-band organic salt (EDO-TTF)2PF6. Science 307, 86–89 (2005).

    Article  CAS  Google Scholar 

  9. Cartier dit Moulin, C. et al. Photoinduced ferrimagnetic systems in Prussian blue analogues CIxCo4[Fe(CN)6]y (CI = alkali cation). 2. X-ray absorption spectroscopy of the metastable state. J. Am. Chem. Soc. 122, 6653–6658 (2000).

    Article  CAS  Google Scholar 

  10. Risset, O. N. et al. Light-induced changes in magnetism in a coordination polymer heterostructure Rb0.24Co[Fe(CN)6]0.74@K0.10Co[Cr(CN)6]0.70·nH2O and the role of the shell thickness on the properties of both core and shell. J. Am. Chem. Soc. 136, 15660–15669 (2014).

    Article  CAS  Google Scholar 

  11. Aguila, D., Prado, Y., Koumousi, E. S., Mathoniere, C. & Clerac, R. Switchable Fe/Co Prussian blue networks and molecular analogues. Chem. Soc. Rev. 45, 203–224 (2016).

    Article  CAS  Google Scholar 

  12. Shimamoto, N., Ohkoshi, S., Sato, O. & Hashimoto, K. Control of charge-transfer-induced spin transition temperature on cobalt−iron Prussian blue analogues. Inorg. Chem. 41, 678–684 (2002).

    Article  CAS  Google Scholar 

  13. Cafun, J. D. et al. Room-temperature photoinduced electron transfer in a Prussian blue analogue under hydrostatic pressure. Angew. Chem. Int. Ed. 51, 9146–9148 (2012).

    Article  CAS  Google Scholar 

  14. Verdaguer, M. et al. Molecules to build solids: high TC molecule-based magnets by design and recent revival of cyano complexes chemistry. Coord. Chem. Rev. 190–192, 1023–1047 (1999).

    Article  Google Scholar 

  15. Koumousi, E. S. et al. Metal-to-metal electron transfer in Co/Fe Prussian blue molecular analogues: the ultimate miniaturization. J. Am. Chem. Soc. 136, 15461–15464 (2014).

    Article  CAS  Google Scholar 

  16. Mercurol, J. et al. [FeIILSCoIIILS]2 [FeIIILSCoIIHS]2 photoinduced conversion in a cyanide-bridged heterobimetallic molecular square. Chem. Commun. 46, 8995–8997 (2010).

    Article  CAS  Google Scholar 

  17. Miyamoto, Y. et al. Photo-induced magnetization and first-principles calculations of a two-dimensional cyanide-bridged Co–W bimetal assembly. Dalton Trans. 45, 19249–19256 (2016).

    Article  CAS  Google Scholar 

  18. Asahara, A. et al. Ultrafast dynamics of reversible photoinduced phase transitions in rubidium manganese hexacyanoferrate investigated by midinfrared CN vibration spectroscopy. Phys. Rev. B 86, 195138 (2012).

    Article  Google Scholar 

  19. Moritomo, Y. et al. Photoinduced phase transition into a hidden phase in cobalt hexacyanoferrate as investigated by time-resolved X-ray absorption fine structure. J. Phys. Soc. Jpn. 82, 033601 (2013).

    Article  Google Scholar 

  20. Johansson, J. O. et al. Directly probing spin dynamics in a molecular magnet with femtosecond time-resolution. Chem. Sci. 7, 7061–7067 (2016).

    Article  CAS  Google Scholar 

  21. van Veenendaal, M. Ultrafast intersystem crossings in Fe-Co Prussian blue analogues. Sci. Rep. 7, 6672 (2017).

    Article  Google Scholar 

  22. Watanabe, S. et al. Intra- and inter-atomic optical transitions of Fe, Co, and Ni ferrocyanides studied using first-principles many-electron calculations. J. Appl. Phys. 119, 235102 (2016).

    Article  Google Scholar 

  23. Verdaguer, M. Molecular electronics emerges from molecular magnetism. Science 272, 698–699 (1996).

    Article  CAS  Google Scholar 

  24. Chergui, M. & Collet, E. Photoinduced structural dynamics of molecular systems mapped by time-resolved X-ray methods. Chem. Rev. 117, 11025–11065 (2017).

    Article  CAS  Google Scholar 

  25. Lemke, H. T. et al. Coherent structural trapping through wave packet dispersion during photoinduced spin state switching. Nat. Commun. 8, 15342 (2017).

    Article  CAS  Google Scholar 

  26. Trinh, L. et al. Photoswitchable 11 nm CsCoFe Prussian blue analogue nanocrystals with high relaxation temperature. Inorg. Chem. 59, 13153–13161 (2020).

    Article  CAS  Google Scholar 

  27. Zerdane, S. et al. Probing transient photoinduced charge transfer in Prussian blue analogues with time-resolved XANES and optical spectroscopy. Eur. J. Inorg. Chem. 2018, 272–277 (2018).

    Article  CAS  Google Scholar 

  28. Bordage, A. & Bleuzen, A. Influence of the number of alkali cation on the photo-induced CoIIIFeII ↔ CoIIFeIII charge transfer in Csx CoFe PBAs – a Co K-edge XANES study. Radiat. Phys. Chem. 175, 108143 (2020).

    Article  CAS  Google Scholar 

  29. Chollet, M. et al. The X-ray pump-probe instrument at the Linac Coherent Light Source. J. Synchrotron Radiat. 22, 503–507 (2015).

    Article  CAS  Google Scholar 

  30. Harmand, M. et al. Achieving few-femtosecond time-sorting at hard X-ray free-electron lasers. Nat. Photon. 7, 215–218 (2013).

    Article  CAS  Google Scholar 

  31. Zerdane, S. et al. Comparison of structural dynamics and coherence of d–d and MLCT light-induced spin state trapping. Chem. Sci. 8, 4978–4986 (2017).

    Article  CAS  Google Scholar 

  32. Frisch, M. J. et al. Gaussian 09 (Gaussian, Inc., 2016).

  33. Ohkoshi, S. I. et al. Cesium ion detection by terahertz light. Sci. Rep. 7, 8088 (2017).

    Article  Google Scholar 

  34. Zerdane, S., Cammarata, M., Iasco, O., Boillot, M. L. & Collet, E. Photoselective MLCT to d-d pathways for light-induced excited spin state trapping. J. Chem. Phys. 151, 171101 (2019).

    Article  CAS  Google Scholar 

  35. Kawamoto, T. & Abe, S. Mechanism of reversible photo-induced magnetization in Prussian blue analogues. Phase Transit. 74, 209–233 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

E.C. and M.C. acknowledge the support of Rennes Métropole, ANR (ANR-13-BS04-0002 FEMTOMAT, ANR-19-CE30-0004 ELECTROPHONE, ANR-19-CE29-0018 MULTICROSS and ANR-15-CE32-0004 Bio-XFEL), Centre National de la Recherche Scientifique (CNRS, PEPS SASLELX), Fonds Européen de Développement Régional (FEDER) and Région Bretagne (ARED 8925/XFELMAT). S.Z, L.C., T.M. and S.F.M. acknowledge the support of ANR (ANR-13-BS04-0002 FEMTOMAT). T.M. thanks the IUF (Institut Universitaire de France) for financial support. M.C., L.B., M.L., C.E. and M.T. acknowledge the support of European Union Horizon2020 under the Marie Skłodowska-Curie Project ‘X-Probe’ grant no. 637295. We thank A. Bleuzen for sharing the published XANES data used in Supplementary Fig. 7. Use of the Linac Coherent Light Source, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515.

Author information

Authors and Affiliations

Authors

Contributions

E.C. and M.C., in collaboration with T.M. and S.F.M., conceived the project. S.M., L.C. and T.M. synthesized and characterized the CoFe sample. M.C., S.Z., L.B., G.A., C.E., M.T., M.L., R.A.M., J.M.G., S.S. and E.C. performed the femtosecond XANES experiment. S.Z. and G.A. performed the optical study. S.Z., M.C. and E.C. analysed the data. S.F.M. performed the DFT and TD-DFT calculations. E.C. and M.C. set the physical picture for interpreting the data. E.C. and M.C. wrote the paper. All authors contributed to discussions and gave comments on the manuscript.

Corresponding authors

Correspondence to Marco Cammarata or Eric Collet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Chemistry thanks Michael Odelius and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Table 1.

Supplementary Video 1

Torsion mode at 1.62 THz for the (CN)5–Coii–N–C–Feiii–(CN)5 state.

Supplementary Video 2

Torsion mode at 1.44 THz for the (CN)5–Coii–N–C–Feiii–(CN)5 state.

Supplementary Video 3

Torsion mode at 1.85 THz for the (CN)5–Coiii–N–C–Feii–(CN)5 state.

Supplementary Video 4

Torsion mode at 1.56 THz for the Co2iiiFe2ii square.

Supplementary Video 5

Breathing mode at 11.2 THz for the (CN)5–Coii–N–C–Feiii–(CN)5 state.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cammarata, M., Zerdane, S., Balducci, L. et al. Charge transfer driven by ultrafast spin transition in a CoFe Prussian blue analogue. Nat. Chem. 13, 10–14 (2021). https://doi.org/10.1038/s41557-020-00597-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00597-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing