Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emissive spin-0 triplet-pairs are a direct product of triplet–triplet annihilation in pentacene single crystals and anthradithiophene films

An Author Correction to this article was published on 16 December 2020

This article has been updated

Abstract

Singlet fission and triplet–triplet annihilation represent two highly promising ways of increasing the efficiency of photovoltaic devices. Both processes are believed to be mediated by a biexcitonic triplet-pair state, 1(TT). Recently however, there has been debate over the role of 1(TT) in triplet–triplet annihilation. Here we use intensity-dependent, low-temperature photoluminescence measurements, combined with kinetic modelling, to show that distinct 1(TT) emission arises directly from triplet–triplet annihilation in high-quality pentacene single crystals and anthradithiophene (diF-TES-ADT) thin films. This work demonstrates that a real, emissive triplet-pair state acts as an intermediate in both singlet fission and triplet–triplet annihilation and that this is true for both endo- and exothermic singlet fission materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Polycrystalline diftes thin films and single crystals of pentacene.
Fig. 2: Long-lived emissive 1(TT) states in diftes thin films at 100 K.
Fig. 3: 1(TT) is the only emissive state formed from bimolecular TTA in diftes films at 100 K.
Fig. 4: The Merrifield kinetic scheme accurately captures the dependence of diftes PL on excitation density, temperature and magnetic field, provided that 1(TT) is explicitly included.
Fig. 5: Delayed emission from pentacene single crystals at 77 K is consistent with a Herzberg–Teller mechanism.
Fig. 6: Bimolecular TTA directly populates 1(TT) states in pentacene single crystals.

Data availability

The datasets generated during and/or analysed during the current study are available in the University of Sheffield’s ORDA repository (hosted by figshare; https://doi.org/10.15131/shef.data.12943496). Source data are provided with this paper.

Code availability

The code used to perform the kinetic modelling shown in Figs. 4 and 6 is available at https://github.com/davidbossanyi/sfmodelling. The TRPL data processing was performed using an application available at https://github.com/fast-spectroscopy-sheffield/iCCD-kinetics. Additional code used in the data analysis is available from D.G.B. on request.

Change history

References

  1. 1.

    Day, J., Senthilarasu, S. & Mallick, T. K. Improving spectral modification for applications in solar cells: a review. Renew. Energy 132, 186–205 (2019).

    Google Scholar 

  2. 2.

    Tayebjee, M. J. Y., McCamey, D. R. & Schmidt, T. W. Beyond Shockley–Queisser: molecular approaches to high-efficiency photovoltaics. J. Phys. Chem. Lett. 6, 2367–2378 (2015).

    CAS  PubMed  Google Scholar 

  3. 3.

    Rao, A. & Friend, R. H. Harnessing singlet exciton fission to break the Shockley–Queisser limit. Nat. Rev. Mater. 2, 17063 (2017).

    CAS  Google Scholar 

  4. 4.

    Frazer, L., Gallaher, J. K. & Schmidt, T. W. Optimizing the efficiency of solar photon upconversion. ACS Energy Lett. 2, 1346–1354 (2017).

    CAS  Google Scholar 

  5. 5.

    Frankevich, E., Lesin, V. & Pristupa, A. Rate constants of singlet exciton fission in a tetracene crystal determined from the RYDMR spectral linewidth. Chem. Phys. Lett. 58, 127–131 (1978).

    CAS  Google Scholar 

  6. 6.

    Burdett, J. J. & Bardeen, C. J. Quantum beats in crystalline tetracene delayed fluorescence due to triplet pair coherences produced by direct singlet fission. J. Am. Chem. Soc. 134, 8597–8607 (2012).

    CAS  PubMed  Google Scholar 

  7. 7.

    Pensack, R. D. et al. Observation of two triplet-pair intermediates in singlet exciton fission. J. Phys. Chem. Lett. 7, 2370–2375 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Burdett, J. J., Piland, G. B. & Bardeen, C. J. Magnetic field effects and the role of spin states in singlet fission. Chem. Phys. Lett. 585, 1–10 (2013).

    CAS  Google Scholar 

  9. 9.

    Scholes, G. D. Correlated pair states formed by singlet fission and exciton–exciton annihilation. J. Phys. Chem. A 119, 12699–12705 (2015).

    CAS  PubMed  Google Scholar 

  10. 10.

    Miyata, K., Conrad-Burton, F. S., Geyer, F. L. & Zhu, X.-Y. Triplet pair states in singlet fission. Chem. Rev. 119, 4261–4292 (2019).

    CAS  PubMed  Google Scholar 

  11. 11.

    Musser, A. J. & Clark, J. Triplet-pair states in organic semiconductors. Annu. Rev. Phys. Chem. 70, 323–351 (2019).

    CAS  PubMed  Google Scholar 

  12. 12.

    Khan, S. & Mazumdar, S. Theory of transient excited state absorptions in pentacene and derivatives: triplet–triplet biexciton versus free triplets. J. Phys. Chem. Lett. 8, 5943–5948 (2017).

    CAS  PubMed  Google Scholar 

  13. 13.

    Khan, S. & Mazumdar, S. Optical probes of the quantum-entangled triplet–triplet state in a heteroacene dimer. Phys. Rev. B 98, 165202 (2018).

    CAS  Google Scholar 

  14. 14.

    Khan, S. & Mazumdar, S. Free triplets versus bound triplet–triplet biexciton in intramolecular singlet fission materials: structure–property correlations. J. Phys. Chem. C 124, 1171–1177 (2020).

    CAS  Google Scholar 

  15. 15.

    Weiss, L. R. et al. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2016).

    Google Scholar 

  16. 16.

    Tayebjee, M. J. Y. et al. Quintet multiexciton dynamics in singlet fission. Nat. Phys. 13, 182–188 (2016).

    Google Scholar 

  17. 17.

    Bayliss, S. L. et al. Geminate and nongeminate recombination of triplet excitons formed by singlet fission. Phys. Rev. Lett. 112, 238701 (2014).

    PubMed  Google Scholar 

  18. 18.

    Yong, C. K. et al. The entangled triplet pair state in acene and heteroacene materials. Nat. Commun. 8, 15953 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Burdett, J. J., Gosztola, D. & Bardeen, C. J. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135, 214508 (2011).

    PubMed  Google Scholar 

  20. 20.

    Tayebjee, M. J. Y., Clady, R. G. C. R. & Schmidt, T. W. The exciton dynamics in tetracene thin films. Phys. Chem. Chem. Phys. 15, 14797–14805 (2013).

    CAS  PubMed  Google Scholar 

  21. 21.

    Lukman, S. et al. Efficient singlet fission and triplet-pair emission in a family of zethrene diradicaloids. J. Am. Chem. Soc. 139, 18376–18385 (2017).

    CAS  PubMed  Google Scholar 

  22. 22.

    Hu, J. et al. New insights into the design of conjugated polymers for intramolecular singlet fission. Nat. Commun. 9, 2999 (2018).

    PubMed  PubMed Central  Google Scholar 

  23. 23.

    Mauck, C. M. et al. Singlet fission via an excimer-like intermediate in 3,6-bis(thiophen-2-yl)diketopyrrolopyrrole derivatives. J. Am. Chem. Soc. 138, 11749–11761 (2016).

    CAS  PubMed  Google Scholar 

  24. 24.

    Stern, H. L. et al. Vibronically coherent ultrafast triplet-pair formation and subsequent thermally activated dissociation control efficient endothermic singlet fission. Nat. Chem. 9, 1205–1212 (2017).

    CAS  PubMed  Google Scholar 

  25. 25.

    Stern, H. L. et al. Identification of a triplet pair intermediate in singlet exciton fission in solution. Proc. Natl Acad. Sci. USA 112, 7656–7661 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Busby, E. et al. A design strategy for intramolecular singlet fission mediated by charge-transfer states in donor–acceptor organic materials. Nat. Mater. 14, 426–433 (2015).

    CAS  PubMed  Google Scholar 

  27. 27.

    Thampi, A. et al. Elucidation of excitation energy dependent correlated triplet pair formation pathways in an endothermic singlet fission system. J. Am. Chem. Soc. 140, 4613–4622 (2018).

    CAS  PubMed  Google Scholar 

  28. 28.

    Dover, C. B. et al. Endothermic singlet fission is hindered by excimer formation. Nat. Chem. 10, 305–310 (2018).

    CAS  PubMed  Google Scholar 

  29. 29.

    Schrauben, J. N., Ryerson, J. L., Michl, J. & Johnson, J. C. Mechanism of singlet fission in thin films of 1,3-diphenylisobenzofuran. J. Am. Chem. Soc. 136, 7363–7373 (2014).

    CAS  PubMed  Google Scholar 

  30. 30.

    Margulies, E. A. et al. Direct observation of a charge-transfer state preceding high-yield singlet fission in terrylenediimide thin films. J. Am. Chem. Soc. 139, 663–671 (2017).

    CAS  PubMed  Google Scholar 

  31. 31.

    Liu, H. et al. Synthesis and photophysical properties of a ‘face-to-face’ stacked tetracene dimer. Phys. Chem. Chem. Phys. 17, 6523–6531 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Korovina, N. V. et al. Singlet fission in a covalently linked cofacial alkynyltetracene dimer. J. Am. Chem. Soc. 138, 617–627 (2016).

    CAS  PubMed  Google Scholar 

  33. 33.

    Subramanian, S. et al. Chromophore fluorination enhances crystallization and stability of soluble anthradithiophene semiconductors. J. Am. Chem. Soc. 130, 2706–2707 (2008).

    CAS  PubMed  Google Scholar 

  34. 34.

    Paudel, K., Giesbers, G., Van Schenck, J., Anthony, J. & Ostroverkhova, O. Molecular packing-dependent photoconductivity in functionalized anthradithiophene crystals. Org. Electron. 67, 311–319 (2019).

    CAS  Google Scholar 

  35. 35.

    Wilson, M. W. B., Rao, A., Ehrler, B. & Friend, R. H. Singlet exciton fission in polycrystalline pentacene: from photophysics toward devices. Acc. Chem. Res. 46, 1330–1338 (2013).

    CAS  PubMed  Google Scholar 

  36. 36.

    Poletayev, A. D. et al. Triplet dynamics in pentacene crystals: applications to fission-sensitized photovoltaics. Adv. Mater. 26, 919–924 (2014).

    CAS  PubMed  Google Scholar 

  37. 37.

    Campbell, R. B., Robertson, J. M. & Trotter, J. The crystal structure of hexacene, and a revision of the crystallographic data for tetracene and pentacene. Acta Crystallogr. 15, 289–290 (1962).

    CAS  Google Scholar 

  38. 38.

    Hestand, N. J. et al. Polarized absorption in crystalline pentacene: theory vs experiment. J. Phys. Chem. C 119, 22137–22147 (2015).

    CAS  Google Scholar 

  39. 39.

    Orlandi, G. & Siebrand, W. Theory of vibronic intensity borrowing. comparison of Herzberg–Teller and Born–Oppenheimer coupling. J. Chem. Phys. 58, 4513–4523 (1973).

    CAS  Google Scholar 

  40. 40.

    Albrecht, A. C. On the theory of Raman intensities. J. Chem. Phys. 34, 1476–1484 (1961).

    CAS  Google Scholar 

  41. 41.

    Kim, H. & Zimmerman, P. M. Coupled double triplet state in singlet fission. Phys. Chem. Chem. Phys. 20, 30083–30094 (2018).

    CAS  PubMed  Google Scholar 

  42. 42.

    Jaumot, J., Gargallo, R., de Juan, A. & Tauler, R. A graphical user-friendly interface for MCR-ALS: a new tool for multivariate curve resolution in Matlab. Chemometr. Intell. Lab. Syst. 76, 101–110 (2005).

    CAS  Google Scholar 

  43. 43.

    Wallikewitz, B. H., Kabra, D., Gélinas, S. & Friend, R. H. Triplet dynamics in fluorescent polymer light-emitting diodes. Phys. Rev. B 85, 045209 (2012).

    Google Scholar 

  44. 44.

    Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    CAS  PubMed  Google Scholar 

  45. 45.

    Johnson, R. C. & Merrifield, R. E. Effects of magnetic fields on the mutual annihilation of triplet excitons in anthracene crystals. Phys. Rev. B 1, 896–902 (1970).

    Google Scholar 

  46. 46.

    Smith, M. B. & Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013).

    CAS  PubMed  Google Scholar 

  47. 47.

    Tapping, P. C. & Huang, D. M. Comment on ‘magnetic field effects on singlet fission and fluorescence decay dynamics in amorphous rubrene’. J. Phys. Chem. C 120, 25151–25157 (2016).

    CAS  Google Scholar 

  48. 48.

    Ye, C., Gray, V., Mårtensson, J. & Börjesson, K. Annihilation versus excimer formation by the triplet pair in triplet–triplet annihilation photon upconversion. J. Am. Chem. Soc. 141, 9578–9584 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Aoki-Matsumoto, T. et al. Excitonic photoluminescence in pentacene single crystal. Int. J. Mod. Phys. B 15, 3753–3756 (2001).

    CAS  Google Scholar 

  50. 50.

    He, R., Chi, X., Pinczuk, A., Lang, D. V. & Ramirez, A. P. Extrinsic optical recombination in pentacene single crystals: evidence of gap states. Appl. Phys. Lett. 87, 211117 (2005).

    Google Scholar 

  51. 51.

    Wilson, M. W. B. et al. Ultrafast dynamics of exciton fission in polycrystalline pentacene. J. Am. Chem. Soc. 133, 11830–11833 (2011).

    CAS  PubMed  Google Scholar 

  52. 52.

    Anger, F. et al. Photoluminescence spectroscopy of pure pentacene, perfluoropentacene and mixed thin films. J. Chem. Phys. 136, 054701 (2012).

    CAS  PubMed  Google Scholar 

  53. 53.

    Hestand, N. J. & Spano, F. C. Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118, 7069–7163 (2018).

    CAS  PubMed  Google Scholar 

  54. 54.

    He, R. et al. Resonant Raman scattering in nanoscale pentacene films. Appl. Phys. Lett. 84, 987–989 (2004).

    CAS  Google Scholar 

  55. 55.

    Lim, S.-H., Bjorklund, T. G., Spano, F. C. & Bardeen, C. J. Exciton delocalization and superradiance in tetracene thin films and nanoaggregates. Phys. Rev. Lett. 92, 107402 (2004).

    PubMed  Google Scholar 

  56. 56.

    Burdett, J. J., Müller, A. M., Gosztola, D. & Bardeen, C. J. Excited state dynamics in solid and monomeric tetracene: the roles of superradiance and exciton fission. J. Chem. Phys. 133, 144506 (2010).

    PubMed  Google Scholar 

  57. 57.

    Burgos, J., Pope, M., Swenberg, C. E. & Alfano, R. R. Heterofission in pentacene-doped tetracene single crystals. Phys. Status Solidi 83, 249–256 (1977).

    CAS  Google Scholar 

  58. 58.

    Walker, B. J., Musser, A. J., Beljonne, D. & Friend, R. H. Singlet exciton fission in solution. Nat. Chem. 5, 1019–1024 (2013).

    CAS  PubMed  Google Scholar 

  59. 59.

    Della Valle, R. G. et al. Intramolecular and low-frequency intermolecular vibrations of pentacene polymorphs as a function of temperature. J. Phys. Chem. B 108, 1822–1826 (2004).

    Google Scholar 

  60. 60.

    Della Valle, R. G. et al. Exploring the polymorphism of crystalline pentacene. Org. Electron. 5, 1–6 (2004).

    Google Scholar 

  61. 61.

    Brillante, A. et al. Raman phonon spectra of pentacene polymorphs. Chem. Phys. Lett. 357, 32–36 (2002).

    CAS  Google Scholar 

  62. 62.

    Mizuno, K., Matsui, A. & J. Sloan, G. Intermediate exciton–phonon coupling in tetracene. J. Phys. Soc. Jpn 53, 2799–2806 (1984).

    CAS  Google Scholar 

  63. 63.

    Nishimura, H., Yamaoka, T., Matsui, A., Mizuno, K. & J. Sloan, G. Exciton self-trapping in tetracene crystals: a case of shallow self-trap depth. J. Phys. Soc. Jpn 54, 1627–1633 (1985).

    CAS  Google Scholar 

  64. 64.

    Matsui, A. The polarized absorption edge and the Davydov splitting of anthracene. J. Phys. Soc. Jpn 21, 2212–2222 (1966).

    CAS  Google Scholar 

  65. 65.

    Mizuno, K.-i & Matsui, A. Frenkel exciton dynamics in anthracene under high pressure and quasi-free exciton state. J. Phys. Soc. Jpn 55, 2427–2435 (1986).

    CAS  Google Scholar 

  66. 66.

    Mizuno, K.-i, Matsui, A. & Sloan, G. J. Exciton–phonon interaction in tetracene single crystals under pressure. Chem. Phys. 131, 423–433 (1989).

    CAS  Google Scholar 

  67. 67.

    Kobayashi, M., Mizuno, K.-i & Matsui, A. High-pressure study of free excitons and self-trapped excitons in anthracene crystals at 1.5 K. J. Phys. Soc. Jpn 58, 809–812 (1989).

    CAS  Google Scholar 

  68. 68.

    Urbach, F. The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324–1324 (1953).

    CAS  Google Scholar 

  69. 69.

    Coropceanu, V., Chen, X.-K., Wang, T., Zheng, Z. & Brédas, J.-L. Charge-transfer electronic states in organic solar cells. Nat. Rev. Mater. 4, 689–707 (2019).

    Google Scholar 

  70. 70.

    Schweicher, G. et al. Molecular semiconductors for logic operations: dead-end or bright future? Adv. Mater. 32, 1905909 (2020).

    CAS  Google Scholar 

  71. 71.

    Raimondo, L., Silvestri, L., Borghesi, A. & Tavazzi, S. Exciton–lattice phonon coupling in organic semiconductor crystals beyond the static disorder. J. Phys. Chem. C 117, 26248–26254 (2013).

    CAS  Google Scholar 

  72. 72.

    Salleo, A. in Organic Electronics Emerging Concepts and Technologies (eds Cicoira, F & Santato, C.) Ch. 14, 341–380 (Wiley, 2013).

  73. 73.

    Schreiber, M. & Toyozawa, Y. Numerical experiments on the absorption lineshape of the exciton under lattice vibrations. III. The Urbach rule. J. Phys. Soc. Jpn 51, 1544–1550 (1982).

    CAS  Google Scholar 

  74. 74.

    Turlet, J. & Philpott, M. R. Surface and bulk exciton transitions in the reflection spectrum of tetracene crystals. J. Chem. Phys. 62, 4260–4265 (1975).

    CAS  Google Scholar 

  75. 75.

    Vukmirović, N., Bruder, C. & Stojanović, V. M. Electron–phonon coupling in crystalline organic semiconductors: microscopic evidence for nonpolaronic charge carriers. Phys. Rev. Lett. 109, 126407 (2012).

    PubMed  Google Scholar 

  76. 76.

    Sánchez-Carrera, R. S., Paramonov, P., Day, G. M., Coropceanu, V. & Brédas, J.-L. Interaction of charge carriers with lattice vibrations in oligoacene crystals from naphthalene to pentacene. J. Am. Chem. Soc. 132, 14437–14446 (2010).

    PubMed  Google Scholar 

  77. 77.

    Coropceanu, V. et al. Hole- and electron-vibrational couplings in oligoacene crystals: intramolecular contributions. Phys. Rev. Lett. 89, 275503 (2002).

    CAS  PubMed  Google Scholar 

  78. 78.

    Kurik, M. V. & Tsikora, L. I. Exciton–phonon interaction in crystals of linear polyacenes. Phys. Status Solidi 66, 695–702 (1974).

    CAS  Google Scholar 

  79. 79.

    Klafter, J. & Jortner, J. Urbach rule in the optical spectra of crystalline and amorphous organic-solids. Chem. Phys. 26, 421–430 (1977).

    CAS  Google Scholar 

  80. 80.

    Srimath Kandada, A. R., Petrozza, A. & Lanzani, G. Ultrafast dissociation of triplets in pentacene induced by an electric field. Phys. Rev. B 90, 75310 (2014).

    Google Scholar 

  81. 81.

    Lee, T. S. et al. Triplet energy transfer governs the dissociation of the correlated triplet pair in exothermic singlet fission. J. Phys. Chem. Lett. 9, 4087–4095 (2018).

    CAS  PubMed  Google Scholar 

  82. 82.

    Suna, A. Kinematics of exciton–exciton annihilation in molecular crystals. Phys. Rev. B 1, 1716–1739 (1970).

    Google Scholar 

  83. 83.

    Kepler, R. G., Caris, J. C., Avakian, P. & Abramson, E. Triplet excitons and delayed fluorescence in anthracene crystals. Phys. Rev. Lett. 10, 400–402 (1963).

    CAS  Google Scholar 

  84. 84.

    Hall, J. L., Jennings, D. A. & McClintock, R. M. Study of anthracene fluorescence excited by the ruby giant-pulse laser. Phys. Rev. Lett. 11, 364–366 (1963).

    CAS  Google Scholar 

  85. 85.

    Pope, M. & Swenberg, C. E. Electronic Processes in Organic Crystals and Polymers. Monographs on the Physics and Chemistry of Materials (Oxford Univ. Press, 1999).

  86. 86.

    Ryasnyanskiy, A. & Biaggio, I. Triplet exciton dynamics in rubrene single crystals. Phys. Rev. B 84, 193203 (2011).

    Google Scholar 

  87. 87.

    Köhler, A. & Bässler, H. What controls triplet exciton transfer in organic semiconductors? J. Mater. Chem. 21, 4003–4011 (2011).

    Google Scholar 

  88. 88.

    Nelson, S. F., Lin, Y.-Y., Gundlach, D. J. & Jackson, T. N. Temperature-independent transport in high-mobility pentacene transistors. Appl. Phys. Lett. 72, 1854–1856 (1998).

    CAS  Google Scholar 

  89. 89.

    Ostroverkhova, O. et al. Ultrafast carrier dynamics in pentacene, functionalized pentacene, tetracene and rubrene single crystals. Appl. Phys. Lett. 88, 162101 (2006).

    Google Scholar 

  90. 90.

    Minari, T., Nemoto, T. & Isoda, S. Temperature and electric-field dependence of the mobility of a single-grain pentacene field-effect transistor. J. Appl. Phys. 99, 34506 (2006).

    Google Scholar 

  91. 91.

    Schulze, T. F. & Schmidt, T. W. Photochemical upconversion: present status and prospects for its application to solar energy conversion. Energy Environ. Sci. 8, 103–125 (2015).

    CAS  Google Scholar 

  92. 92.

    Ieuji, R., Goushi, K. & Adachi, C. Triplet–triplet upconversion enhanced by spin–orbit coupling in organic light-emitting diodes. Nat. Commun. 10, 5283 (2019).

    PubMed  PubMed Central  Google Scholar 

  93. 93.

    Ashiotis, G. et al. The fast azimuthal integration Python library: pyFAI. J. Appl. Crystallogr. 48, 510–519 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. 94.

    Jiang, Z. GIXSGUI: a Matlab toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Crystallogr. 48, 917–926 (2015).

    CAS  Google Scholar 

  95. 95.

    Hallani, R. K. et al. Structural and electronic properties of crystalline, isomerically pure anthradithiophene derivatives. Adv. Funct. Mater. 26, 2341–2348 (2016).

    CAS  Google Scholar 

  96. 96.

    McGhie, A. R., Garito, A. F. & Heeger, A. J. A gradient sublimer for purification and crystal growth of organic donor and acceptor molecules. J. Cryst. Growth 22, 295–297 (1974).

    CAS  Google Scholar 

  97. 97.

    Jurchescu, O. D., Baas, J. & Palstra, T. T. M. Effect of impurities on the mobility of single crystal pentacene. Appl. Phys. Lett. 84, 3061–3063 (2004).

    CAS  Google Scholar 

  98. 98.

    Wilson, M. W. B. et al. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 135, 16680–16688 (2013).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

D.G.B. and J.A.S. thank the EPSRC Centre for Doctoral Training in New and Sustainable Photovoltaics (EP/L01551X/1) for studentship support. J.Z. and M.M. acknowledge funding by the Deutsche Forschungsgemeinschaft via the Collaborative Research Center ‘N-Heteropolycycles as Functional Materials’ (SFB 1249, C06). J.D.S. thanks the Grantham Centre for Sustainable Futures for studentship support. J.E.A. and E.H. thank the US NSF (CHE-1609974) for support of material synthesis. J.C., A.J.M. and S.W. thank EPSRC for funding (EP/S002103/1 and EP/M025330/1). We thank EPSRC for a Capital Equipment award (EP/L022613/1 and EP/R042802/1), which provided the Lord Porter Laser Laboratory Facility used in this study. We further thank Xenocs for their ongoing support through the X-ray scattering user programme at the University of Sheffield and we thank the EPSRC for funding the purchase of this instrument. We thank R. Jayaprakash for assistance with the polarized absorption measurement. Finally, we thank P. Green and M.W.B. Wilson from the University of Toronto for providing us with inorganic semiconductor nanocrystals for triplet sensitization.

Author information

Affiliations

Authors

Contributions

J.C. conceived the project. D.G.B., A.J.M. and J.C. designed the experiments. D.G.B. made the diF-TES-ADT samples and performed all of the spectroscopic measurements, data analysis and kinetic modelling. S.W. performed the magnetic field-dependent measurements. M.M. fabricated and characterized the pentacene single crystals under the supervision of J.Z. J.A.S. and R.C.K. performed the GIWAXS and AFM measurements. J.D.S. and D.C. assisted with transient absorption measurements. E.H. and J.E.A. provided the diF-TES-ADT. D.G.B. and J.C. wrote the manuscript with input from A.J.M.

Corresponding authors

Correspondence to David G. Bossanyi or Jenny Clark.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and associated discussion.

Source data

Source Data Fig. 1

Source data xlsx

Source Data Fig. 2

Source data xlsx

Source Data Fig. 3

Source data xlsx

Source Data Fig. 4

Source data xlsx

Source Data Fig. 5

Source data xlsx

Source Data Fig. 6

Source data xlsx

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bossanyi, D.G., Matthiesen, M., Wang, S. et al. Emissive spin-0 triplet-pairs are a direct product of triplet–triplet annihilation in pentacene single crystals and anthradithiophene films. Nat. Chem. 13, 163–171 (2021). https://doi.org/10.1038/s41557-020-00593-y

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing