Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Manganese-catalysed divergent silylation of alkenes

Abstract

Transition-metal-catalysed, redox-neutral dehydrosilylation of alkenes is a long-standing challenge in organic synthesis, with current methods suffering from low selectivity and narrow scope. In this study, we report a general and simple method for the manganese-catalysed dehydrosilylation and hydrosilylation of alkenes, with Mn2(CO)10 as a catalyst precursor, by using a ligand-tuned metalloradical reactivity strategy. This enables versatility and controllable selectivity with a 1:1 ratio of alkenes and silanes, and the synthetic robustness and practicality of this method are demonstrated using complex alkenes and light olefins. The selectivity of the reaction has been studied using density functional theory calculations, showing the use of an iPrPNP ligand to favour dehydrosilylation, while a JackiePhos ligand favours hydrosilylation. The reaction is redox-neutral and atom-economical, exhibits a broad substrate scope and excellent functional group tolerance, and is suitable for various synthetic applications on a gram scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The state of the art for divergent silylation of alkenes.
Fig. 2: Preliminary mechanistic studies.
Fig. 3: Mechanistic proposal and DFT studies.
Fig. 4: Enrichment and elaboration of products.

Similar content being viewed by others

Data availability

All data generated or analysed during this study are included in this Article and its Supplementary Information. Crystallographic data have been deposited at the Cambridge Crystallographic Data Centre (CCDC) as CCDC 1937151 (5), 1937156 (6) and 1937154 (19) and can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/getstructures.

References

  1. Troegel, D. & Stohrer, J. Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord. Chem. Rev. 255, 1440–1459 (2011).

    Article  CAS  Google Scholar 

  2. Hill, R. M. (ed.) in Silicone Surfactants, Surfactants Science Series Vol. 86 (Marcel Dekker, 1999).

  3. Franz, A. K. & Wilson, S. O. Organosilicon molecules with medicinal applications. J. Med. Chem. 56, 388–405 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Sore, H. F., Gallowaya, W. & Spring, D. R. Palladium-catalysed cross-coupling of organosilicon reagents. Chem. Soc. Rev. 41, 1845–1866 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. Sanchez, C., Belleville, P., Popall, M. & Nicole, L. Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem. Soc. Rev. 40, 696–753 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Min, G. K., Hernandez, D. & Skrydstrup, T. Efficient routes to carbon–silicon bond formation for the synthesis of silicon-containing peptides and azasilaheterocycles. Acc. Chem. Res. 46, 457–470 (2013).

    Article  CAS  PubMed  Google Scholar 

  7. Cheng, C. & Hartwig, J. F. Catalytic silylation of unactivated C–H bonds. Chem. Rev. 115, 8946–8975 (2015).

    Article  CAS  PubMed  Google Scholar 

  8. Bähr, S. & Oestreich, M. Electrophilic aromatic substitution with silicon electrophiles: catalytic Friedel–Crafts C−H silylation. Angew. Chem. Int. Ed. 56, 52–59 (2017).

    Article  CAS  Google Scholar 

  9. Corey, J. Y. Reactions of hydrosilanes with transition metal complexes and characterization of the products. Chem. Rev. 111, 863–1071 (2011).

    Article  CAS  PubMed  Google Scholar 

  10. Marciniec, B., Maciejewski, H., Pietraszuk, C. & Pawluć, P. in Hydrosilyaltion: A Comprehensive Review on Recent Advances (ed. Marciniec, B.) (Springer, 2009).

  11. Speier, J. L., Webster, J. A. & Barnes, G. H. The addition of silicon hydrides to olefinic double bonds. Part II. The use of group VIII metal catalysts. J. Am. Chem. Soc. 79, 974–979 (1957).

    Article  CAS  Google Scholar 

  12. Markó, I. E. et al. Selective and efficient platinum(0)-carbene complexes as hydrosilylation catalysts. Science 298, 204–206 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. Du, X. & Huang, Z. Advances in base-metal-catalyzed alkene hydrosilylation. ACS Catal. 7, 1227–1243 (2017).

    Article  CAS  Google Scholar 

  14. Sun, J. & Deng, L. Cobalt complex-catalyzed hydrosilylation of alkenes and alkynes. ACS Catal. 6, 290–300 (2016).

    Article  CAS  Google Scholar 

  15. Nakajima, Y. & Shimada, S. Hydrosilylation reaction of olefins: recent advances and perspectives. RSC Adv. 5, 20603–20616 (2015).

    Article  CAS  Google Scholar 

  16. Millan, A., Towns, E. & Maitlis, P. M. The direct conversion of α-olefins into vinyl- and allyl-silances catalysed by rhodium complexes. J. Chem. Soc. Chem. Commun. 673–674 (1981).

  17. Cheng, C., Simmons, E. M. & Hartwig, J. F. Iridium-catalyzed, diastereoselective dehydrogenative silylation of terminal alkenes with (TMSO)2MeSiH. Angew. Chem. Int. Ed. 52, 8984–8989 (2013).

    Article  CAS  Google Scholar 

  18. LaPointe, A. M., Rix, F. C. & Brookhart, M. Mechanistic studies of palladium(ii)-catalyzed hydrosilation and dehydrogenative silation reactions. J. Am. Chem. Soc. 119, 906–917 (1997).

    Article  CAS  Google Scholar 

  19. Bokka, A. & Jeon, J. Regio- and stereoselective dehydrogenative silylation and hydrosilylation of vinylarenes catalyzed by ruthenium alkylidenes. Org. Lett. 18, 5324–5327 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. Takeuchi, R. & Yasue, H. Cationic rhodium complex-catalyzed highly selective dehydrogenative silylation of styrene. Organometallics 15, 2098–2102 (1996).

    Article  CAS  Google Scholar 

  21. Naumov, R. N., Itazaki, M., Kamitani, M. & Nakazawa, H. Selective dehydrogenative silylation-hydrogenation reaction of divinyldisiloxane with hydrosilane catalyzed by an iron complex. J. Am. Chem. Soc. 134, 804–807 (2012).

    Article  CAS  PubMed  Google Scholar 

  22. Atienza, C. et al. Bis(imino)pyridine cobalt-catalyzed dehydrogenative silylation of alkenes: scope, mechanism and origins of selective allylsilane formation. J. Am. Chem. Soc. 136, 12108–12118 (2014).

    Article  CAS  PubMed  Google Scholar 

  23. Jiang, Y., Blacque, O., Fox, T., Frech, C. M. & Berke, H. Highly selective dehydrogenative silylation of alkenes catalyzed by rhenium complexes. Chem. Eur. J. 15, 2121–2128 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Toutov, A. A. et al. Silylation of C–H bonds in aromatic heterocycles by an earth-abundant metal catalyst. Nature 518, 80–84 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. Cheng, C. & Hartwig, J. F. Rhodium-catalyzed intermolecular C–H silylation of arenes with high steric regiocontrol. Science 343, 853–857 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Carney, J. R., Dillon, B. R. & Thomas, S. P. Recent advances of manganese catalysis for organic synthesis. Eur. J. Org. Chem. 3912–3929 (2016).

  27. Liu, W. & Ackermann, L. Manganese-catalyzed C–H activation. ACS Catal. 6, 3743–3752 (2016).

    Article  CAS  Google Scholar 

  28. Yang, X. & Wang, C. Manganese-catalyzed hydrosilylation reactions. Chem. Asian J. 13, 2307–2315 (2018).

    Article  CAS  PubMed  Google Scholar 

  29. Pratt, S. L. & Faltynek, R. A. Hydrosilation catalysis via silylmanganese carbonyl complexes: thermal vs. photochemical activation. J. Organomet. Chem. 258, C5–C8 (1983).

    Article  CAS  Google Scholar 

  30. Hilal, H. S., Abu-Eid, M., Al-Subu, M. & Khalaf, S. Hydrosilylation reactions catalysed by decacarbonyldimanganese(0). J. Mol. Catal. 39, 1–11 (1987).

    Article  CAS  Google Scholar 

  31. Hilal, H. S., Suleiman, M. A., Jondi, W. J., Khalaf, S. & Masoud, M. M. Poly(siloxane)-supported decacarbonyldimanganese(0) catalyst for terminal olefin hydrosilylation reactions: the effect of the support on the catalyst selectivity, activity and stability. J. Mol. Catal. 144, 47–59 (1999).

    Article  CAS  Google Scholar 

  32. Price, J. S., Emslie, D. J. H. & Britten, J. F. Manganese silylene hydride complexes: synthesis and reactivity with ethylene to afford silene hydride complexes. Angew. Chem. Int. Ed. 56, 6223–6227 (2017).

    Article  CAS  Google Scholar 

  33. Carney, J. R., Dillon, B. R., Campbell, L. & Thomas, S. P. Manganese-catalyzed hydrofunctionalization of alkenes. Angew. Chem. Int. Ed. 57, 10620–10624 (2018).

    Article  CAS  Google Scholar 

  34. Yang, X. & Wang, C. Diverse fates of β-silyl radical under manganese catalysis: hydrosilylation and dehydrogenative silylation of alkenes. Chin. J. Chem. 36, 1047–1051 (2018).

    Article  CAS  Google Scholar 

  35. Mukhopadhyay, T. K., Flores, M., Groya, T. L. & Trovitch, R. J. A β-diketiminate manganese catalyst for alkene hydrosilylation: substrate scope, silicone preparation and mechanistic insight. Chem. Sci. 9, 7673–7680 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Luo, Y. R. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007).

  37. Friestad, G. K. & Qin, J. Intermolecular alkyl radical addition to chiral N-acylhydrazones mediated by manganese carbonyl. J. Am. Chem. Soc. 123, 9922–9923 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. McMahon, C. M., Renn, M. S. & Alexanian, E. J. Manganese-catalyzed carboacylations of alkenes with alkyl iodides. Org. Lett. 18, 4148–4150 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nuhant, P. et al. Visible‐light‐initiated manganese catalysis for C–H alkylation of heteroarenes: applications and mechanistic studies. Angew. Chem. Int. Ed. 56, 15309–15313 (2017).

    Article  CAS  Google Scholar 

  40. Wang, L., Lear, J. M., Rafferty, S. M., Fosu, S. C. & Nagib, D. A. Ketyl radical reactivity via atom transfer catalysis. Science 362, 225–229 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yang, X. & Wang, C. Dichotomy of manganese catalysis via organometallic or radical mechanism: stereodivergent hydrosilylation of alkynes. Angew. Chem. Int. Ed. 57, 923–928 (2018).

    Article  CAS  Google Scholar 

  42. Herrick, R. S., Herrinton, T. R., Walker, H. W. & Brown, T. L. Rates of halogen atom transfer to manganese carbonyl radicals. Organometallics 4, 42–45 (1985).

    Article  CAS  Google Scholar 

  43. Docherty, J. H., Peng, J., Dominey, A. P. & Thomas, S. P. Activation and discovery of earth-abundant metal catalysts using sodium tert-butoxide. Nat. Chem. 9, 595–600 (2017).

    Article  CAS  PubMed  Google Scholar 

  44. Hicks, J. D., Hyde, A. M., Cuezva, A. M. & Buchwald, S. L. Pd-catalyzed N-arylation of secondary acyclic amides: catalyst development, scope and computational study. J. Am. Chem. Soc. 131, 16720–16734 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fischer, H. The persistent radical effect: a principle for selective radical reactions and living radical polymerizations. Chem. Rev. 101, 3581–3610 (2000).

    Article  CAS  Google Scholar 

  46. Leifert, D. & Studer, A. The persistent radical effect in organic synthesis. Angew. Chem. Int. Ed. 59, 74–108 (2020).

    Article  CAS  Google Scholar 

  47. Martin, S. & Watson, D. A. Preparation of vinyl silyl ethers and disiloxanes via the silyl-Heck reaction of silyl ditriflates. J. Am. Chem. Soc. 135, 13330–13333 (2013).

    Article  CAS  PubMed  Google Scholar 

  48. Denmark, S. E. & Wang, Z. Highly stereoselective hydrocarbation of terminal alkynes via Pt-catalyzed hydrosilylation/Pd-catalyzed cross-coupling reactions. Org. Lett. 3, 1073–1076 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Oshima, K. in Science of Synthesis (ed. Fleming, I.) 713–754 (Thieme, 2001).

  50. Whitmore, F. C. & Sommer, L. H. Organo-silicon compounds. II. Silicon analogs of neopentyl chloride and neopentyl iodide: the alpha silicon effect. J. Am. Chem. Soc. 68, 481–484 (1946).

    Article  CAS  PubMed  Google Scholar 

  51. Obradors, C., Martinez, R. M. & Shenvi, R. A. Ph(iPrO)SiH2: an exceptional reductant for metal-catalyzed hydrogen atom transfers. J. Am. Chem. Soc. 138, 4962–4971 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Tondreau, A. M. et al. Iron catalysts for selective anti-Markovnikov alkene hydrosilylation using tertiary silanes. Science 335, 567–570 (2012).

    Article  CAS  PubMed  Google Scholar 

  53. Jia, X. & Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium–iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation. Nat. Chem. 8, 157–161 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Jondi, W., Zyoud, A., Mansour, W., Hussein, A. Q. & Hilal, H. S. Highly active and selective catalysts for olefin hydrosilylation reactions using metalloporphyrins intercalated in natural clays. React. Chem. Eng. 1, 194–203 (2016).

    Article  CAS  Google Scholar 

  55. Hu, M.-Y. et al. Ligands with 1,10-phenanthroline scaffold for highly regioselective iron-catalysed alkene hydrosilylation. Nat. Commun. 9, 221 (2018).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (grants 21971108, 21971111, 21702098, 21703118, 21732003 and 21672099), the Fundamental Research Funds for the Central Universities (020514380214), the Natural Science Foundation of Jiangsu Province (grant no. BK20190006), the ‘Innovation & Entrepreneurship Talents Plan’ of Jiangsu Province, the ‘Jiangsu Six Peak Talent Project’, Shandong Provincial Natural Science Foundation (grant no. ZR2017MB038) and start-up funds from Nanjing University for financial support. Y. Liang, G. Wang and J. Han are acknowledged for their helpful suggestions and discussions. X. Wu and Y. Zhao are acknowledged for their help with H2 liberation reactions and X-ray single-crystal structure determination. We also thank K. Liu, Z. Yan, Y. Ning and W. Li for reproducing products 3a, 3v, 4a and 4m and C. Zhu, J. Han, Y. Pang, S. Fang and W. Li for their help with the preparation of this manuscript. The DFT calculations were supported by the High Performance Computing Center of Qufu Normal University.

Author information

Authors and Affiliations

Authors

Contributions

J.D., Z.Y. and J.X. conceived and designed the experiments. J.D., Z.Y. and J.M. performed the experiments. J.D. and Z.Y. analysed and discussed the experimental data. X.-A.Y. and L.M. performed DFT calculations and discussed the manuscript. J.X. wrote the manuscript with input from all authors and discussed with C.Z. All the authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Jin Xie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Tables 1–8, Figs. 1–30, Methods, text, experimental information, NMR, IR, GC-MS, HPLC spectra and references.

Supplementary Data 1

Crystallographic data for compound 5. CCDC reference 1937151.

Supplementary Data 2

Crystallographic data for compound 6. CCDC reference 1937156.

Supplementary Data 3

Crystallographic data for compound 19. CCDC reference 1937154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Yuan, XA., Yan, Z. et al. Manganese-catalysed divergent silylation of alkenes. Nat. Chem. 13, 182–190 (2021). https://doi.org/10.1038/s41557-020-00589-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00589-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing