Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Metabolic glycan labelling for cancer-targeted therapy

Abstract

Metabolic glycoengineering with unnatural sugars provides a powerful tool to label cell membranes with chemical tags for subsequent targeted conjugation of molecular cargos via efficient chemistries. This technology has been widely explored for cancer labelling and targeting. However, as this metabolic labelling process can occur in both cancerous and normal cells, cancer-selective labelling needs to be achieved to develop cancer-targeted therapies. Unnatural sugars can be either rationally designed to enable preferential labelling of cancer cells, or specifically delivered to cancerous tissues. In this Review Article, we will discuss the progress to date in design and delivery of unnatural sugars for metabolic labelling of tumour cells and subsequent development of tumour-targeted therapy. Metabolic cell labelling for cancer immunotherapy will also be discussed. Finally, we will provide a perspective on future directions of metabolic labelling of cancer and immune cells for the development of potent, clinically translatable cancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Metabolic labelling of cancer cells with reactive chemical tags via unnatural monosaccharides.
Fig. 2: Materials for systemic delivery of unnatural sugars to tumours.
Fig. 3: Rational design of unnatural sugars with cancer-labelling selectivity.
Fig. 4: Metabolic labelling of cancer cells for cancer-targeted treatment.
Fig. 5: Metabolic sugar labelling for cancer immunotherapy.

Similar content being viewed by others

References

  1. Ferlay, J. et al. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953 (2019).

    CAS  PubMed  Google Scholar 

  2. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018).

    PubMed  Google Scholar 

  3. Shapiro, C. L. & Recht, A. Side effects of adjuvant treatment of breast cancer. N. Engl. J. Med. 344, 1997–2008 (2001).

    CAS  PubMed  Google Scholar 

  4. Baskar, R., Lee, K. A., Yeo, R. & Yeoh, K.-W. Cancer and radiation therapy: current advances and future directions. Int. J. Med. Sci. 9, 193 (2012).

    PubMed  PubMed Central  Google Scholar 

  5. Maeda, H., Greish, K. & Fang, J. in Polymer therapeutics II 103–121 (Springer, 2006).

  6. Greish, K. in Cancer Nanotechnology 25–37 (Springer, 2010).

  7. Maeda, H. Toward a full understanding of the EPR effect in primary and metastatic tumors as well as issues related to its heterogeneity. Adv. Drug Deliv. Rev. 91, 3–6 (2015).

    CAS  PubMed  Google Scholar 

  8. Fang, J., Nakamura, H. & Maeda, H. The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Adv. Drug Deliv. Rev. 63, 136–151 (2011).

    CAS  PubMed  Google Scholar 

  9. Gustafson, H. H., Holt-Casper, D., Grainger, D. W. & Ghandehari, H. Nanoparticle uptake: the phagocyte problem. Nano Today 10, 487–510 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Danhier, F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J. Control. Release 244, 108–121 (2016).

    CAS  PubMed  Google Scholar 

  11. Danhier, F., Feron, O. & Préat, V. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release 148, 135–146 (2010).

    CAS  PubMed  Google Scholar 

  12. Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Prabhakar, U. et al. Challenges and key considerations of the enhanced permeability and retention effect for nanomedicine drug delivery in oncology (AACR, 2013).

  14. Taurin, S., Nehoff, H. & Greish, K. Anticancer nanomedicine and tumor vascular permeability; where is the missing link? J. Control. Release 164, 265–275 (2012).

    CAS  PubMed  Google Scholar 

  15. Torchilin, V. P. in Drug delivery 3–53 (Springer, 2010).

  16. Byrne, J. D., Betancourt, T. & Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 60, 1615–1626 (2008).

    CAS  PubMed  Google Scholar 

  17. Huang, X. et al. A reexamination of active and passive tumor targeting by using rod-shaped gold nanocrystals and covalently conjugated peptide ligands. ACS Nano 4, 5887–5896 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Gu, F. X. et al. Targeted nanoparticles for cancer therapy. Nano Today 2, 14–21 (2007).

    Google Scholar 

  19. Wu, X., Chen, J., Wu, M. & Zhao, J. X. Aptamers: active targeting ligands for cancer diagnosis and therapy. Theranostics 5, 322 (2015).

    PubMed  PubMed Central  Google Scholar 

  20. Steichen, S. D., Caldorera-Moore, M. & Peppas, N. A. A review of current nanoparticle and targeting moieties for the delivery of cancer therapeutics. Eur. J. Pharm. Sci. 48, 416–427 (2013).

    CAS  PubMed  Google Scholar 

  21. Cho, K., Wang, X., Nie, S. & Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 14, 1310–1316 (2008).

    CAS  PubMed  Google Scholar 

  22. FDA approves gemtuzumab ozogamicin for CD33-positive AML. FDA http://go.nature.com/FDA-approves-gemtuzumab (2017).

  23. Iyer, U. & Kadambi, V. Antibody drug conjugates—Trojan horses in the war on cancer. J. Pharmacol. Toxicol. Methods 64, 207–212 (2011).

    CAS  PubMed  Google Scholar 

  24. Amiri-Kordestani, L. et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin. Cancer Res. 20, 4436–4441 (2014).

    CAS  PubMed  Google Scholar 

  25. Lamb, Y. N. Inotuzumab ozogamicin: first global approval. Drugs 77, 1603–1610 (2017).

    CAS  PubMed  Google Scholar 

  26. Karunagaran, D. et al. ErbB‐2 is a common auxiliary subunit of NDF and EGF receptors: implications for breast cancer. EMBO J. 15, 254–264 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Nicholson, R., Gee, J. & Harper, M. EGFR and cancer prognosis. Eur. J. Cancer 37, 9–15 (2001).

    Google Scholar 

  28. Ellis, L. M. & Hicklin, D. J. VEGF-targeted therapy: mechanisms of anti-tumour activity. Nat. Rev. Cancer 8, 579 (2008).

    CAS  PubMed  Google Scholar 

  29. Ferrara, N., Hillan, K. J., Gerber, H.-P. & Novotny, W. Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat. Rev. Drug Discov. 3, 391 (2004).

    CAS  PubMed  Google Scholar 

  30. Van Dam, G. M. et al. Intraoperative tumor-specific fluorescence imaging in ovarian cancer by folate receptor-α targeting: first in-human results. Nat. Med. 17, 1315 (2011).

    PubMed  Google Scholar 

  31. Sudimack, J. & Lee, R. J. Targeted drug delivery via the folate receptor. Adv. Drug Deliv. Rev. 41, 147–162 (2000).

    CAS  PubMed  Google Scholar 

  32. Imai, Y., Leung, C. K., Friesen, H. G. & Shiu, R. P. Epidermal growth factor receptors and effect of epidermal growth factor on growth of human breast cancer cells in long-term tissue culture. Cancer Res. 42, 4394–4398 (1982).

    CAS  PubMed  Google Scholar 

  33. Haigler, H., Ash, J. F., Singer, S. J. & Cohen, S. Visualization by fluorescence of the binding and internalization of epidermal growth factor in human carcinoma cells A-431. Proc. Natl Acad. Sci. 75, 3317–3321 (1978).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Carpenter, G., Lembach, K. J., Morrison, M. & Cohen, S. Characterization of the binding of 125-I-labeled epidermal growth factor to human fibroblasts. J. Biol. Chem. 250, 4297–4304 (1975).

    CAS  PubMed  Google Scholar 

  35. Fendly, B. M. et al. Characterization of murine monoclonal antibodies reactive to either the human epidermal growth factor receptor or HER2/neu gene product. Cancer Res. 50, 1550–1558 (1990).

    CAS  PubMed  Google Scholar 

  36. Laughlin, S. T. & Bertozzi, C. R. Metabolic labeling of glycans with azido sugars and subsequent glycan-profiling and visualization via Staudinger ligation. Nat. Protoc. 2, 2930 (2007).

    CAS  PubMed  Google Scholar 

  37. Laughlin, S. T. et al. Metabolic labeling of glycans with azido sugars for visualization and glycoproteomics. Methods Enzymol. 415, 230–250 (2006).

    CAS  PubMed  Google Scholar 

  38. Chang, P. V. et al. Copper-free click chemistry in living animals. Proc. Natl Acad. Sci. 107, 1821–1826 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Jacobs, C. L. et al. in Methods in Enzymology, Vol. 327 (eds Thorner, J., Emr S. D. & Abelson, J. N.) 260–275 (Academic Press, 2000).

  40. Luchansky, S. J. et al. in Methods in enzymology, Vol. 362 249–272 (Elsevier, 2003).

  41. Yi, W. et al. Remodeling bacterial polysaccharides by metabolic pathway engineering. Proc. Natl Acad. Sci. 106, 4207–4212 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Laughlin, S. T., Baskin, J. M., Amacher, S. L. & Bertozzi, C. R. In vivo Imaging of Membrane-Associated Glycans in Developing Zebrafish. Science 320, 664–667 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yoon, H. I. et al. Bioorthogonal Copper free click chemistry for labeling and tracking of chondrocytes in vivo. Bioconjugate Chem. 27, 927–936 (2016).

    CAS  Google Scholar 

  44. Xie, R. et al. In vivo metabolic labeling of sialoglycans in the mouse brain by using a liposome-assisted bioorthogonal reporter strategy. Proc. Natl Acad. Sci. 113, 5173–5178 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Agatemor, C. et al. Exploiting metabolic glycoengineering to advance healthcare. Nat. Rev. Chem. 3, 605–620 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Wang, H. et al. Selective in vivo metabolic cell-labeling-mediated cancer targeting. Nat. Chem. Biol. 13, 415 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Akabani, G., Carlin, S., Welsh, P. & Zalutsky, M. R. In vitro cytotoxicity of 211At-labeled trastuzumab in human breast cancer cell lines: effect of specific activity and HER2 receptor heterogeneity on survival fraction. Nucl. Med. Biol. 33, 333–347 (2006).

    CAS  PubMed  Google Scholar 

  48. Koo, H. et al. Bioorthogonal Copper-free click chemistry in vivo for tumor-targeted delivery of nanoparticles. Angew. Chem. Int. Ed. 51, 11836–11840 (2012).

    CAS  Google Scholar 

  49. Keppler, O. T., Horstkorte, R., Pawlita, M., Schmidt, C. & Reutter, W. Biochemical engineering of the N-acyl side chain of sialic acid: biological implications. Glycobiology 11, 11R–18R (2001).

    CAS  PubMed  Google Scholar 

  50. Kayser, H. et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-d-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992).

    CAS  PubMed  Google Scholar 

  51. Tonetti, M. et al. The metabolism of 6-deoxyhexoses in bacterial and animal cells. Biochimie 80, 923–931 (1998).

    CAS  PubMed  Google Scholar 

  52. Ligos, J. M. et al. functional interaction between the Ser/Thr Kinase PKL12 and N-acetylglucosamine kinase, a prominent enzyme implicated in the salvage pathway for GlcNAc recycling. J. Biol. Chem. 277, 6333–6343 (2002).

    CAS  PubMed  Google Scholar 

  53. Banerjee, P. S., Hart, G. W. & Cho, J. W. Chemical approaches to study O-GlcNAcylation. Chem. Soc. Rev. 42, 4345–4357 (2013).

    CAS  PubMed  Google Scholar 

  54. Forma, E., Jóźwiak, P., Bryś, M. & Krześlak, A. The potential role of O-GlcNAc modification in cancer epigenetics. Cell Mol. Biol. Lett. 19, 438–460 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. de Queiroz, R. M., Carvalho, É. & Dias, W. B. O-GlcNAcylation: The Sweet Side of the Cancer. Frontiers in Oncology 4 (2014).

  56. Yarema, K. J., Mahal, L. K., Bruehl, R. E., Rodriguez, E. C. & Bertozzi, C. R. Metabolic delivery of ketone groups to sialic acid residues application to cell surface glycoform engineering. J. Biol. Chem. 273, 31168–31179 (1998).

    CAS  PubMed  Google Scholar 

  57. Ferwerda, W., Blok, C. M. & Heijlman, J. Turnover of free sialic acid, CMP‐sialic acid, and bound sialic acid in rat brain. J. Neurochem. 36, 1492–1499 (1981).

    CAS  PubMed  Google Scholar 

  58. Ivanov, S., Gavazova, E., Antonova, M. & Chelibonova-Lorer, H. Studies on N-acetylneuraminic acid biosynthesis in chicken liver and hepatoma Mc-29 by using [14C] N-acetylmannosamine and [14C] glucosamine. Int. J. Biochem. 17, 1125–1128 (1985).

    CAS  PubMed  Google Scholar 

  59. Bennett, G. & O’shaughnessy, D. The site of incorporation of sialic acid residues into glycoproteins and the subsequent fates of these molecules in various rat and mouse cell types as shown by radioautography after injection of [3H] N-acetylmannosamine. I. Observations in hepatocytes. J. Cell Biol. 88, 1–15 (1981).

    CAS  PubMed  Google Scholar 

  60. Saxon, E. et al. Investigating cellular metabolism of synthetic azidosugars with the Staudinger Ligation. J. Am. Chem. Soc. 124, 14893–14902 (2002).

    CAS  PubMed  Google Scholar 

  61. Jones, M. B. et al. Characterization of the cellular uptake and metabolic conversion of acetylated N-acetylmannosamine (ManNAc) analogues to sialic acids. Biotechnol. Bioeng. 85, 394–405 (2004).

    CAS  PubMed  Google Scholar 

  62. Qin, W. et al. Artificial cysteine S-glycosylation induced by per-O-acetylated unnatural monosaccharides during metabolic glycan labeling. Angew. Chem. Int. Ed. 57, 1817–1820 (2018).

    CAS  Google Scholar 

  63. Cheng, B., Xie, R., Dong, L. & Chen, X. metabolic remodeling of cell-surface sialic acids: principles, applications, and recent advances. ChemBioChem 17, 11–27 (2016).

    CAS  PubMed  Google Scholar 

  64. Luchansky, S. J., Goon, S. & Bertozzi, C. R. Expanding the diversity of unnatural cell‐surface sialic acids. ChemBioChem 5, 371–374 (2004).

    CAS  PubMed  Google Scholar 

  65. Dube, D. H. & Bertozzi, C. R. Metabolic oligosaccharide engineering as a tool for glycobiology. Curr. Opin. Chem. Biol. 7, 616–625 (2003).

    CAS  PubMed  Google Scholar 

  66. Andersen, K. A., Aronoff, M. R., McGrath, N. A. & Raines, R. T. Diazo groups endure metabolism and enable chemoselectivity in cellulo. J. Am. Chem. Soc. 137, 2412–2415 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Sampathkumar, S.-G., Jones, M. B. & Yarema, K. J. Metabolic expression of thiol-derivatized sialic acids on the cell surface and their quantitative estimation by flow cytometry. Nat. Protoc. 1, 1840–1851 (2006).

    CAS  PubMed  Google Scholar 

  68. Josa-Culleré, L., Wainman, Y. A., Brindle, K. M. & Leeper, F. J. Diazo group as a new chemical reporter for bioorthogonal labelling of biomolecules. RSC Adv. 4, 52241–52244 (2014).

    Google Scholar 

  69. Niederwieser, A. et al. Two-color glycan labeling of live cells by a combination of Diels–Alder and click chemistry. Angew. Chem. Int. Ed. 52, 4265–4268 (2013).

    CAS  Google Scholar 

  70. Hsu, T.-L. et al. Alkynyl sugar analogs for the labeling and visualization of glycoconjugates in cells. Proc. Natl Acad. Sci. 104, 2614–2619 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Chang, P. V. et al. Metabolic labeling of sialic acids in living animals with alkynyl sugars. Angew. Chem. Int. Ed. 48, 4030–4033 (2009).

    CAS  Google Scholar 

  72. Bateman, L. A., Zaro, B. W., Chuh, K. N. & Pratt, M. R. N-Propargyloxycarbamate monosaccharides as metabolic chemical reporters of carbohydrate salvage pathways and protein glycosylation. Chem. Commun. 49, 4328–4330 (2013).

    CAS  Google Scholar 

  73. Wang, H. et al. In vivo targeting of metabolically labeled cancers with ultra-small silica nanoconjugates. Theranostics 6, 1467–1476 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang, J., Šečkutė, J., Cole, C. M. & Devaraj, N. K. Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. Angew. Chem. Int. Ed. 51, 7476–7479 (2012).

    CAS  Google Scholar 

  75. Xiong, D.-C. et al. Rapid probing of sialylated glycoproteins in vitro and in vivo via metabolic oligosaccharide engineering of a minimal cyclopropene reporter. Org. Biomol. Chem. 13, 3911–3917 (2015).

    CAS  PubMed  Google Scholar 

  76. Stairs, S. et al. Metabolic glycan imaging by isonitrile–tetrazine click chemistry. ChemBioChem 14, 1063–1067 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Wainman, Y. A. et al. Dual-sugar imaging using isonitrile and azido-based click chemistries. Org. Biomol. Chem. 11, 7297–7300 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Bond, M. R., Zhang, H., Vu, P. D. & Kohler, J. J. Photocrosslinking of glycoconjugates using metabolically incorporated diazirine-containing sugars. Nat. Protoc. 4, 1044 (2009).

    CAS  PubMed  Google Scholar 

  79. Bond, M. R. et al. Metabolism of diazirine-modified N-acetylmannosamine analogues to photo-cross-linking sialosides. Bioconjugate Chem. 22, 1811–1823 (2011).

    CAS  Google Scholar 

  80. Lin, B. et al. Redirecting immunity via covalently incorporated immunogenic sialic acid on the tumor cell surface. Chem. Sci. 7, 3737–3741 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Karver, M. R., Weissleder, R. & Hilderbrand, S. A. Synthesis and evaluation of a series of 1,2,4,5-tetrazines for bioorthogonal conjugation. Bioconjugate Chem. 22, 2263–2270 (2011).

    CAS  Google Scholar 

  82. Murrey, H. E. et al. Systematic evaluation of bioorthogonal reactions in live cells with clickable HaloTag ligands: implications for intracellular imaging. J. Am. Chem. Soc. 137, 11461–11475 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kim, E. & Koo, H. Biomedical applications of copper-free click chemistry: in vitro, in vivo, and ex vivo. Chem. Sci. 10, 7835–7851 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Yoon, H. Y. et al. Artificial chemical reporter targeting strategy using bioorthogonal click reaction for improving active-targeting efficiency of tumor. Mol. Pharm. 14, 1558–1570 (2017).

    CAS  PubMed  Google Scholar 

  85. Hu, F. et al. A Light-up probe with aggregation-induced emission for real-time bio-orthogonal tumor labeling and image-guided photodynamic therapy. Angew. Chem. Int. Ed. 57, 10182–10186 (2018).

    CAS  Google Scholar 

  86. Shim, M. K. et al. Cathepsin B‐specific metabolic precursor for in vivo tumor‐specific fluorescence imaging. Angew. Chem. Int. Ed. 55, 14698–14703 (2016).

    CAS  Google Scholar 

  87. Han, Y. et al. T Cell membrane mimicking nanoparticles with bioorthogonal targeting and immune recognition for enhanced photothermal therapy. Adv. Sci. 0, 1900251.

  88. Neves, A. A. et al. Imaging glycosylation in vivo by metabolic labeling and magnetic resonance imaging. Angew. Chem. Int. Ed. 55, 1286–1290 (2016).

    CAS  Google Scholar 

  89. Lee, S. et al. Chemical tumor-targeting of nanoparticles based on metabolic glycoengineering and click chemistry. ACS Nano 8, 2048–2063 (2014).

    CAS  PubMed  Google Scholar 

  90. Xie, R., Hong, S., Feng, L., Rong, J. & Chen, X. Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. J. Am. Chem. Soc. 134, 9914–9917 (2012).

    CAS  PubMed  Google Scholar 

  91. Du, Y., Xie, R., Sun, Y., Fan, X. & Chen, X. in Methods in Enzymology, Vol. 598. (ed. Imperiali, B.) 321–353 (Academic Press, 2018).

  92. Xie, R. et al. Targeted imaging and proteomic analysis of tumor-associated glycans in living animals. Angew. Chem. Int. Ed. 53, 14082–14086 (2014).

    CAS  Google Scholar 

  93. Sun, Y. et al. Mechanistic investigation and multiplexing of liposome-assisted metabolic glycan labeling. J. Am. Chem. Soc. 140, 3592–3602 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Du, L., Qin, H., Ma, T., Zhang, T. & Xing, D. In vivo imaging-guided photothermal/photoacoustic synergistic therapy with bioorthogonal metabolic glycoengineering-activated tumor targeting nanoparticles. ACS Nano 11, 8930–8943 (2017).

    CAS  PubMed  Google Scholar 

  95. Wang, H. et al. Targeted ultrasound-assisted cancer-selective chemical labeling and subsequent cancer imaging using click chemistry. Angew. Chem. Int. Ed. 55, 5452–5456 (2016).

    CAS  Google Scholar 

  96. Wang, H. et al. In vivo cancer targeting via glycopolyester nanoparticle mediated metabolic cell labeling followed by click reaction. Biomaterials 218, 119305 (2019).

    CAS  PubMed  Google Scholar 

  97. Lee, S. et al. Nano-sized metabolic precursors for heterogeneous tumor-targeting strategy using bioorthogonal click chemistry in vivo. Biomaterials 148, 1–15 (2017).

    CAS  PubMed  Google Scholar 

  98. Li, S. et al. Biomarker-based metabolic labeling for redirected and enhanced immune response. ACS Chem. Biol. 13, 1686–1694 (2018).

    CAS  PubMed  Google Scholar 

  99. Chang, P. V., Dube, D. H., Sletten, E. M. & Bertozzi, C. R. A strategy for the selective imaging of glycans using caged metabolic precursors. J. Am. Chem. Soc. 132, 9516–9518 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Wang, R., Cai, K., Wang, H., Yin, C. & Cheng, J. A caged metabolic precursor for DT-diaphorase-responsive cell labeling. Chem. Commun. 54, 4878–4881 (2018).

    CAS  Google Scholar 

  101. Wang, H., Liu, Y., Xu, M. & Cheng, J. Azido-galactose outperforms azido-mannose for metabolic labeling and targeting of hepatocellular carcinoma. Biomater. Sci. (2019).

  102. Mathew, M. P. et al. Metabolic glycoengineering sensitizes drug-resistant pancreatic cancer cells to tyrosine kinase inhibitors erlotinib and gefitinib. Bioorg. Med. Chem. Lett. 25, 1223–1227 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Wratil, P. R., Horstkorte, R. & Reutter, W. Metabolic glycoengineering with N-Acyl side chain modified mannosamines. Angew. Chem. Int. Ed. 55, 9482–9512 (2016).

    CAS  Google Scholar 

  104. Gnanapragassam, V. S. et al. Sialic acid metabolic engineering: a potential strategy for the neuroblastoma therapy. PloS One 9, e105403 (2014).

    PubMed  PubMed Central  Google Scholar 

  105. Dafik, L., d’Alarcao, M. & Kumar, K. Fluorination of mammalian cell surfaces via the sialic acid biosynthetic pathway. Bioorg. Med. Chem. Lett. 18, 5945–5947 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Dafik, L., d’Alarcao, M. & Kumar, K. Modulation of cellular adhesion by glycoengineering. J. Med. Chem. 53, 4277–4284 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Li, X., Xu, X., Rao, X., Tian, Y. & Yi, W. Chemical remodeling cell surface glycans for immunotargeting of tumor cells. Carbohydr. Res. 452, 25–34 (2017).

    CAS  PubMed  Google Scholar 

  108. Wang, Q., Zhang, J. & Guo, Z. Efficient glycoengineering of GM3 on melanoma cell and monoclonal antibody-mediated selective killing of the glycoengineered cancer cell. Biorg. Med. Chem. 15, 7561–7567 (2007).

    CAS  Google Scholar 

  109. Qiu, L. et al. Combining synthetic carbohydrate vaccines with cancer cell glycoengineering for effective cancer immunotherapy. Cancer Immunol. Immun. 61, 2045–2054 (2012).

    CAS  Google Scholar 

  110. Lemieux, G. A. & Bertozzi, C. R. Modulating cell surface immunoreactivity by metabolic induction of unnatural carbohydrate antigens. Chem. Biol. 8, 265–275 (2001).

    CAS  PubMed  Google Scholar 

  111. Lee, H.-Y. et al. Immunogenicity study of Globo H analogues with modification at the reducing or nonreducing end of the tumor antigen. J. Am. Chem. Soc. 136, 16844–16853 (2014).

    CAS  PubMed  Google Scholar 

  112. Chefalo, P., Pan, Y., Nagy, N., Guo, Z. & Harding, C. V. Efficient metabolic engineering of GM3 on tumor cells by N-phenylacetyl-d-mannosamine. Biochemistry 45, 3733–3739 (2006).

    CAS  PubMed  Google Scholar 

  113. Liu, T., Guo, Z., Yang, Q., Sad, S. & Jennings, H. J. Biochemical engineering of surface α2–8 polysialic acid for immunotargeting tumor cells. J. Biol. Chem. 275, 32832–32836 (2000).

    CAS  PubMed  Google Scholar 

  114. Zou, W. et al. Bioengineering of surface GD3 ganglioside for immunotargeting human melanoma cells. J. Biol. Chem. 279, 25390–25399 (2004).

    CAS  PubMed  Google Scholar 

  115. Samraj, A. N. et al. A red meat-derived glycan promotes inflammation and cancer progression. Proc. Natl Acad. Sci. USA 112, 542–547 (2015).

    CAS  PubMed  Google Scholar 

  116. Li, W. et al. Bio-orthogonal T Cell targeting strategy for robustly enhancing cytotoxicity against tumor cells. Small 15, 1804383 (2019).

    Google Scholar 

Download references

Acknowledgements

This work was supported by funding from National Institutes of Health (1 R01 EB023287, 1 R01 CA223255). H.W. gratefully acknowledges funding support from the Wyss Technology Development Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

H.W. and D.J.M. discussed and wrote the manuscript. We also would like to thank Alexander Najibi, Miguel Sobral, and Alberto Elósegui for insightful comments on the manuscript.

Corresponding author

Correspondence to David J. Mooney.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Mooney, D.J. Metabolic glycan labelling for cancer-targeted therapy. Nat. Chem. 12, 1102–1114 (2020). https://doi.org/10.1038/s41557-020-00587-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00587-w

This article is cited by

Search

Quick links

Nature Briefing: Cancer

Sign up for the Nature Briefing: Cancer newsletter — what matters in cancer research, free to your inbox weekly.

Get what matters in cancer research, free to your inbox weekly. Sign up for Nature Briefing: Cancer