Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells

Abstract

The design and construction of synthetic therapeutic protocells capable of establishing cognate chemical communication channels with living cells is an important challenge for synthetic biology and bio-engineering. Here we develop a step towards protocell-mediated nitric-oxide-induced vasodilation by constructing a new synthetic cell model based on bio-derived coacervate vesicles with high haemocompatibility and increased blood circulation times. The hybrid protocells are prepared by the spontaneous self-assembly of haemoglobin-containing erythrocyte membrane fragments on the surface of preformed polysaccharide–polynucleotide coacervate micro-droplets containing glucose oxidase. We use the sequestered enzymes to program a spatially coupled glucose oxidase/haemoglobin reaction cascade, which in the presence of glucose and hydroxyurea generates a protocell-mediated flux of nitric oxide that we exploit for in vitro and in vivo blood vessel vasodilation. Taken together, our results provide new opportunities for the development of endogenously organized cell-like entities (biocompatible micro-bots) geared specifically towards active interfacing with individual living cells and cell communities.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Structure and function of bio-derived hybrid protocells.
Fig. 2: Construction and characterization of erythrocyte membrane-encapsulated coacervate protocells.
Fig. 3: Haemocompatibility of coacervate-based protocells.
Fig. 4: Blood circulation and in vivo biodistribution.
Fig. 5: Protocell-mediated generation of NO.
Fig. 6: Protocell-induced NO-mediated blood vessel vasodilation.

Data availability

The data analysed and used to support this study can be found within the main text and Supplementary Information.

References

  1. 1.

    Mage, P. L. et al. Shape-based separation of synthetic microparticles. Nat. Mater. 18, 82–89 (2019).

    CAS  PubMed  Google Scholar 

  2. 2.

    Brenner, J. S. et al. Red blood cell-hitchhiking boosts delivery of nanocarriers to chosen organs by orders of magnitude. Nat. Commun. 9, 2684 (2018).

    PubMed  PubMed Central  Google Scholar 

  3. 3.

    Sercombe, L. et al. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol. 6, 286 (2015).

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Monteiro, N., Martins, A., Reis, R. L. & Neves, N. M. Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface 11, 20140459 (2014).

    PubMed  PubMed Central  Google Scholar 

  5. 5.

    Zylberberg, C., Gaskill, K., Pasley, S. & Matosevic, S. Engineering liposomal nanoparticles for targeted gene therapy. Gene Ther. 24, 441–452 (2017).

    CAS  PubMed  Google Scholar 

  6. 6.

    Petersen, A. L., Hansen, A. E., Gabizon, A. & Andresen, T. L. Liposome imaging agents in personalized medicine. Adv. Drug Deliv. Rev. 64, 1417–1435 (2012).

    CAS  PubMed  Google Scholar 

  7. 7.

    Rikken, R. S. M. et al. Shaping polymersomes into predictable morphologies via out-of-equilibrium self-assembly. Nat. Commun. 7, 12606 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Che, H., Cao, S. & van Hest, J. C. M. Feedback-induced temporal control of “breathing” polymersomes to create self-adaptive nanoreactors. J. Am. Chem. Soc. 140, 5356–5359 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9.

    Li, M., Harbron, R., Weaver, J., Binks, B. & Mann, S. Electrostatically gated membrane permeability in inorganic protocells. Nat. Chem. 5, 529–536 (2013).

    CAS  PubMed  Google Scholar 

  10. 10.

    Huang, X. et al. Interfacial assembly of protein–polymer nano-conjugates into stimulus-responsive biomimetic protocells. Nat. Commun. 4, 2239 (2013).

    PubMed  Google Scholar 

  11. 11.

    Huang, X., Patil, A. J., Li, M. & Mann, S. Design and construction of higher-order structure and function in proteinosome-based protocells. J. Am. Chem. Soc. 136, 9225–9234 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Kumar, B. V. V. S. P., Patil, A. J. & Mann, S. Enzyme-powered motility in buoyant organoclay/DNA protocells. Nat. Chem. 10, 1154–1163 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Jang, W.-S., Kim, H. J., Gao, C., Lee, D. & Hammer, D. A. Enzymatically powered surface-associated self-motile protocells. Small 14, 1801715 (2018).

    Google Scholar 

  14. 14.

    Rodríguez-Arco, L., Li, M. & Mann, S. Phagocytosis-inspired behaviour in synthetic protocell communities of compartmentalized colloidal objects. Nat. Mater. 16, 857–863 (2017).

    PubMed  Google Scholar 

  15. 15.

    Qiao, Y., Li, M., Booth, R. & Mann, S. Predatory behaviour in synthetic protocell communities. Nat. Chem. 9, 110–119 (2017).

    CAS  PubMed  Google Scholar 

  16. 16.

    Joesaar, A. et al. DNA-based communication in populations of synthetic protocells. Nat. Nanotechnol. 14, 369–378 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Sun, S. et al. Chemical signaling and functional activation in colloidosome-based protocells. Small 12, 1920–1927 (2016).

    CAS  PubMed  Google Scholar 

  18. 18.

    Schwarz-Schilling, M., Aufinger, L., Mückl, A. & Simmel, F. C. Chemical communication between bacteria and cell-free gene expression systems within linear chains of emulsion droplets. Integr. Biol. 8, 564–570 (2016).

    CAS  Google Scholar 

  19. 19.

    Adamala, K. P., Martin-Alarcon, D. A., Guthrie-Honea, K. R. & Boyden, E. S. Engineering genetic circuit interactions within and between synthetic minimal cells. Nat. Chem. 9, 431–439 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Tang, T.-Y. D. et al. Gene-mediated chemical communication in synthetic protocell communities. ACS Synth. Biol. 7, 339–346 (2018).

    CAS  PubMed  Google Scholar 

  21. 21.

    Gobbo, P. et al. Programmed assembly of synthetic protocells into thermoresponsive prototissues. Nat. Mater. 17, 1145–1153 (2018).

    CAS  PubMed  Google Scholar 

  22. 22.

    Koga, S., Williams, D. S., Perriman, A. W. & Mann, S. Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nat. Chem. 3, 720–724 (2011).

    CAS  PubMed  Google Scholar 

  23. 23.

    Merindol, R., Loescher, S., Samanta, A. & Walther, A. Pathway-controlled formation of mesostructured all-DNA colloids and superstructures. Nat. Nanotechnol. 13, 730–738 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Martin, N. et al. Antagonistic chemical coupling in self-reconfigurable host–guest protocells. Nat. Commun. 9, 3652 (2018).

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Tian, L. et al. Nonequilibrium spatiotemporal sensing within acoustically patterned two-dimensional protocell arrays. ACS Cent. Sci. 4, 1551–1558 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Drobot, B. et al. Compartmentalised RNA catalysis in membrane-free coacervate protocells. Nat. Commun. 9, 3643 (2018).

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Poudyal, R. R. et al. Template-directed RNA polymerization and enhanced ribozyme catalysis inside membraneless compartments formed by coacervates. Nat. Commun. 10, 490 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Zhang, Y., Baekgaard-Laursen, M. & Städler, B. Small subcompartmentalised microreactors as support for hepatocytes. Adv. Healthc. Mater. 6, 1601141 (2017).

    Google Scholar 

  29. 29.

    Balasubramanian, V. et al. Biomimetic engineering using cancer cell membranes for designing compartmentalized nanoreactors with organelle‐like functions. Adv. Mater. 29, 1605375 (2017).

    Google Scholar 

  30. 30.

    Godoy-Gallardo, M., Labay, C., Jansman, M. M. T., Ek, P. K. & Hosta-Rigau, L. Intracellular microreactors as artificial organelles to conduct multiple enzymatic reactions simultaneously. Adv. Healthc. Mater. 6, 1601190 (2017).

    Google Scholar 

  31. 31.

    Thingholm, B., Schattling, P., Zhang, Y. & Städler, B. Subcompartmentalized nanoreactors as artificial organelle with intracellular activity. Small 12, 1806–1814 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Tanner, P., Balasubramanian, V. & Palivan, C. G. Aiding nature’s organelles: artificial peroxisomes play their role. Nano Lett. 13, 2875–2883 (2013).

    CAS  PubMed  Google Scholar 

  33. 33.

    Einfalt, T. et al. Biomimetic artificial organelles with in vitro and in vivo activity triggered by reduction in microenvironment. Nat. Commun. 9, 1127 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Gardner, P. M., Winzer, K. & Davis, B. G. Sugar synthesis in a protocellular model leads to a cell signalling response in bacteria. Nat. Chem. 1, 377–383 (2009).

    CAS  PubMed  Google Scholar 

  35. 35.

    Lentini, R. et al. Integrating artificial with natural cells to translate chemical messages that direct E. coli behaviour. Nat. Commun. 5, 4012 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Lentini, R. et al. Two-way chemical communication between artificial and natural cells. ACS Cent. Sci. 3, 117–123 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Xia, Y. et al. Exploiting the pliability and lateral mobility of Pickering emulsion for enhanced vaccination. Nat. Mater. 17, 187–194 (2018).

    CAS  PubMed  Google Scholar 

  38. 38.

    Zhou, Y. et al. In situ gelation-induced death of cancer cells based on proteinosomes. Biomacromolecules 188, 2446–2453 (2017).

    Google Scholar 

  39. 39.

    Chen, Z. et al. Synthetic beta cells for fusion-mediated dynamic insulin secretion. Nat. Chem. Biol. 14, 86–93 (2018).

    CAS  PubMed  Google Scholar 

  40. 40.

    Crosby, J. et al. Stabilization and enhanced reactivity of actinorhodinpolyketide synthase minimal complex in polymer–nucleotide coacervate droplets. Chem. Commun. 48, 11832–11834 (2012).

    CAS  Google Scholar 

  41. 41.

    Sokolova, E. et al. Enhanced transcription rates in membrane-free protocells formed by coacervation of cell lysate. Proc. Natl Acad. Sci. USA 110, 11692–11697 (2013).

    CAS  PubMed  Google Scholar 

  42. 42.

    Tang, T.-Y. D., van Swaay, D., deMello, A., Anderson, J. L. R. & Mann, S. In vitro gene expression within membrane-free coacervate protocells. Chem. Commun. 51, 11429–11432 (2015).

    Google Scholar 

  43. 43.

    Tang, T.-Y. D. et al. Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nat. Chem. 6, 527–533 (2014).

    Google Scholar 

  44. 44.

    Mason, A. F., Buddingh, B. C., Williams, D. S. & van Hest, J. C. M. Hierarchical self-assembly of a copolymer-stabilized coacervate protocell. J. Am. Chem. Soc. 139, 17309–17312 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Fothergill, J., Li, M., Davis, S. A., Cunningham, J. A. & Mann, S. Nanoparticle-based membrane assembly and silicification in coacervate microdroplets as a route to complex colloidosomes. Langmuir 30, 14591–14596 (2014).

    CAS  PubMed  Google Scholar 

  46. 46.

    Deng, N.-N. & Huck, W. T. S. Microfluidic formation of monodisperse coacervate organelles in liposomes. Angew. Chem. Int. Ed. 56, 9736–9740 (2017).

    CAS  Google Scholar 

  47. 47.

    Long, M. S., Cans, A.-S. & Keating, C. D. Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases. J. Am. Chem. Soc. 130, 756–762 (2008).

    CAS  PubMed  Google Scholar 

  48. 48.

    Booth, R., Qiao, Y., Li, M. & Mann, S. Spatial positioning and chemical coupling in coacervate‐in‐proteinosome protocells. Angew. Chem. Int. Ed. 58, 9120–9124 (2019).

    CAS  Google Scholar 

  49. 49.

    Blocher, W. C. & Perry, S. L. Complex coacervate-based materials for biomedicine. WIREs Nanomed. Nanobiotechnol. 9, e1442 (2017).

    Google Scholar 

  50. 50.

    Chu, H., Gao, J., Chen, C.-W., Huard, J. & Wang, Y. Injectable fibroblast growth factor-2 coacervate for persistent angiogenesis. Proc. Natl Acad. Sci. USA 108, 13444–13449 (2011).

    CAS  PubMed  Google Scholar 

  51. 51.

    Chen, W. C. W. et al. Controlled dual delivery of fibroblast growth factor-2 and interleukin-10 by heparin-based coacervate synergistically enhances ischemic heart repair. Biomaterials 72, 138–151 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Chu, H., Chen, C.-W., Huard, J. & Wang, Y. The effect of a heparin-based coacervate of fibroblast growth factor-2 on scarring in the infarcted myocardium. Biomaterials 34, 1747–1756 (2013).

    CAS  PubMed  Google Scholar 

  53. 53.

    Hu, C.-M. J. et al. Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc. Natl Acad. Sci. USA 108, 10980–10985 (2011).

    CAS  PubMed  Google Scholar 

  54. 54.

    Hu, C.-M. J., Fang, R. H., Luk, B. T. & Zhang, L. Nanoparticle-detained toxins for safe and effective vaccination. Nat. Nanotechnol. 8, 933–938 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Sokol, R. J., Heubi, J. E., Iannaccone, S., Bove, K. E. & Balistreri, W. F. Mechanism causing vitamin E deficiency during chronic childhood cholestasis. Gastroenterology 85, 1172–1182 (1983).

    CAS  PubMed  Google Scholar 

  56. 56.

    Huang, J., Sommers, E. M., Kim-Shapiro, D. B. & King, S. B. Horseradish peroxidase catalyzed nitric oxide formation from hydroxyurea. J. Am. Chem. Soc. 124, 3473–3480 (2002).

    CAS  PubMed  Google Scholar 

  57. 57.

    Gewaltig, M. T. & Kojda, G. Vasoprotection by nitric oxide: mechanisms and therapeutic potential. Cardiovasc. Res. 55, 250–260 (2002).

    CAS  PubMed  Google Scholar 

  58. 58.

    Cohen, R. A. et al. Mechanism of nitric oxide-induced vasodilatation: refilling of intracellular stores by sarcoplasmic reticulum Ca2+ ATPase and inhibition of store-operated Ca2+ influx. Circ. Res. 84, 210–219 (1999).

    CAS  PubMed  Google Scholar 

  59. 59.

    Wang, C., Trudel, L. J., Wogan, G. N. & Deen, W. M. Thresholds of nitric oxide-mediated toxicity in human lymphoblastoid cells. Chem. Res. Toxicol. 16, 1004–1013 (2003).

    CAS  PubMed  Google Scholar 

  60. 60.

    Pacher, P., Beckman, J. S. & Liaudet, L. Nitric oxide and peroxynitrite in health and disease. Physiol. Rev. 87, 315–424 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61.

    Yang, T., Zelikin, A. N. & Chandrawati, R. Progress and promise of nitric oxide-releasing platforms. Adv. Sci. (Weinh.) 5, 1701043 (2018).

    Google Scholar 

  62. 62.

    Franchi-Micheli, S. et al. Mechanical stretch reveals different components of endothelial-mediated vascular tone in rat aortic strips. Br. J. Pharmacol. 131, 1355–1362 (2000).

  63. 63.

    Fleming, I. et al. Isometric contraction induces the Ca2+-independent activation of the endothelial nitric oxide synthase. Proc. Natl Acad. Sci. USA 96, 1123–1128 (1999).

Download references

Acknowledgements

We thank the National Natural Science Foundation of China (21735002, 21778016, 21675047, 21874035) for financial support. The work was partly supported by the BBSRC (BB/P017320/1), the ERC Advanced Grant Scheme (EC-2016-ADG 740235) and BrisSynBio, a BBSRC/EPSRC Synthetic Biology Research Centre (BB/L01386X/1). We thank C. Xu for fruitful discussions, and Rencai Animal Hospital in Changsha for rabbit experiments.

Author information

Affiliations

Authors

Contributions

S.L., K.W., J.L. and S.M. conceived the experiments. S.L., Y.Z., Z.Z. and L.X. performed the experiments. All the authors undertook the data analysis, and S.L., J.L. and S.M. wrote the manuscript.

Corresponding authors

Correspondence to Jianbo Liu or Stephen Mann.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Experiment Section, Table 1, Figs. 1–23.

Reporting Summary

Supplementary Data

Raw data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Zhang, Y., Li, M. et al. Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat. Chem. 12, 1165–1173 (2020). https://doi.org/10.1038/s41557-020-00585-y

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing