Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins

Abstract

DNA nanotechnology is an emerging field that promises fascinating opportunities for the manipulation and imaging of proteins on a cell surface. The key to progress is the ability to create a nucleic acid–protein junction in the context of living cells. Here we report a covalent labelling reaction that installs a biostable peptide nucleic acid (PNA) tag. The reaction proceeds within minutes and is specific for proteins carrying a 2 kDa coiled-coil peptide tag. Once installed, the PNA label serves as a generic landing platform that enables the recruitment of fluorescent dyes via nucleic acid hybridization. We demonstrate the versatility of this approach by recruiting different fluorophores, assembling multiple fluorophores for increased brightness and achieving reversible labelling by way of toehold-mediated strand displacement. Additionally, we show that labelling can be carried out using two different coiled-coil systems, with epidermal growth factor receptor and endothelin receptor type B, on both HEK293 and CHO cells. Finally, we apply the method to monitor internalization of epidermal growth factor receptor on CHO cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemistry of tagging proteins with PNA.
Fig. 2: Fluorescence microscopy characterization of PNA-tag-enabled fluorescent labelling of Cys-E3-EGFR-eGFP on live HEK293 cells.
Fig. 3: PNA-tag-enabled fluorescent labelling of Cys-P1-ETBR-GFPspark on HEK293 cells at different transient expression levels.
Fig. 4: PNA-tag-enabled multifluorophore labelling of Cys-P1-EGFR-eYFP on CHO cells.
Fig. 5: Reversible fluorescent labelling of PNA-tagged Cys-P1-EGFR-eYFP on serum-starved CHO cells and visualization of EGF-induced EGFR internalisation.

Similar content being viewed by others

Data availability statement

Data supporting the results and conclusions are available within this paper and the Supplementary Information. Additional raw data are available at figshare, https://doi.org/10.6084/m9.figshare.c.5127728.

References

  1. Rizzuto, R., Brini, M., Pizzo, P., Murgia, M. & Pozzan, T. Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr. Biol. 5, 635–642 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. W. & Prasher, D. C. Green fluorescent protein as a marker for gene expression. Science 263, 802–805 (1994).

    Article  CAS  PubMed  Google Scholar 

  3. Keppler, A. et al. A general method for the covalent labeling of fusion proteins with small molecules in vivo. Nat. Biotechnol. 21, 86–89 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Gautier, A. et al. An engineered protein tag for multiprotein labeling in living cells. Chem. Biol. 15, 128–136 (2008).

    Article  CAS  PubMed  Google Scholar 

  5. Los, G. V. et al. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3, 373–382 (2008).

    Article  CAS  PubMed  Google Scholar 

  6. Lotze, J., Reinhardt, U., Seitz, O. & Beck-Sickinger, A. G. Peptide-tags for site-specific protein labelling in vitro and in vivo. Mol. Biosyst. 12, 1731–1745 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2018).

  8. Schnitzbauer, J., Strauss, M. T., Schlichthaerle, T., Schueder, F. & Jungmann, R. Super-resolution microscopy with DNA-PAINT. Nat. Protoc. 12, 1198–1228 (2017).

    Article  CAS  PubMed  Google Scholar 

  9. Duose, D. Y. et al. Configuring robust DNA strand displacement reactions for in situ molecular analyses. Nucleic Acids Res. 40, 3289–3298 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Jungmann, R. et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. Nano Lett. 10, 4756–4761 (2010).

    Article  CAS  PubMed  Google Scholar 

  11. Diezmann, F. & Seitz, O. DNA-guided display of proteins and protein ligands for the interrogation of biology. Chem. Soc. Rev. 40, 5789–5801 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. Peri-Naor, R., Ilani, T., Motiei, L. & Margulies, D. Protein–protein communication and enzyme activation mediated by a synthetic chemical transducer. J. Am. Chem. Soc. 137, 9507–9510 (2015).

    Article  CAS  PubMed  Google Scholar 

  13. Schade, M. et al. Remote control of lipophilic nucleic acids domain partitioning by DNA hybridization and enzymatic cleavage. J. Am. Chem. Soc. 134, 20490–20497 (2012).

    Article  CAS  PubMed  Google Scholar 

  14. Röglin, L., Ahmadian, M. R. & Seitz, O. DNA-controlled reversible switching of peptide conformation and bioactivity. Angew. Chem. Int. Ed. 46, 2704–2707 (2007).

    Article  CAS  Google Scholar 

  15. Freeman, R. et al. Instructing cells with programmable peptide DNA hybrids. Nat. Comm. 8, 15982 (2017).

  16. Ueki, R., Atsuta, S., Ueki, A. & Sando, S. Nongenetic reprogramming of the ligand specificity of growth factor receptors by bispecific DNA aptamers. J. Am. Chem. Soc. 139, 6554–6557 (2017).

    Article  CAS  PubMed  Google Scholar 

  17. Leung, K., Chakraborty, K., Saminathan, A. & Krishnan, Y. A DNA nanomachine chemically resolves lysosomes in live cells. Nat. Nanotechnol. 14, 176–183 (2019).

    Article  CAS  PubMed  Google Scholar 

  18. Janssen, B. M. G., Van Rosmalen, M., Van Beek, L. & Merkx, M. Antibody activation using DNA-based logic gates. Angew. Chem. Int. Ed. 54, 2530–2533 (2015).

    Article  CAS  Google Scholar 

  19. Qian, L., Winfree, E. & Bruck, J. Neural network computation with DNA strand displacement cascades. Nature 475, 368–372 (2011).

    Article  CAS  PubMed  Google Scholar 

  20. Elbaz, J. et al. DNA computing circuits using libraries of DNAzyme subunits. Nat. Nanotechnol. 5, 417–422 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Hemphill, J. & Deiters, A. DNA computation in mammalian cells: microRNA logic operations. J. Am. Chem. Soc. 135, 10512–10518 (2013).

    Article  CAS  PubMed  Google Scholar 

  22. You, M. et al. DNA ‘nano-claw’: logic-based autonomous cancer targeting and therapy. J. Am. Chem. Soc. 136, 1256–1259 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Egholm, M. et al. PNA hybridizes to complementary oligonucleotides obeying the Watson–Crick hydrogen-bonding rules. Nature 365, 566–568 (1993).

    Article  CAS  PubMed  Google Scholar 

  24. Demidov, V. V. et al. Stability of peptide nucleic acids in human serum and cellular extracts. Biochem. Pharmacol. 48, 1310–1313 (1994).

    Article  CAS  PubMed  Google Scholar 

  25. Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 995–1000 (2006).

    Article  PubMed  CAS  Google Scholar 

  26. Meyer, R., Giselbrecht, S., Rapp, B. E., Hirtz, M. & Niemeyer, C. M. Advances in DNA-directed immobilization. Curr. Opin. Chem. Biol. 18, 8–15 (2014).

    Article  CAS  PubMed  Google Scholar 

  27. Trads, J. B., Tørring, T. & Gothelf, K. V. Site-selective conjugation of native proteins with DNA. Acc. Chem. Res. 50, 1367–1374 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. Kazane, S. A. et al. Self-assembled antibody multimers through peptide nucleic acid conjugation. J. Am. Chem. Soc. 135, 340–346 (2013).

    Article  CAS  PubMed  Google Scholar 

  29. Dickgiesser, S. et al. Self-assembled hybrid aptamer–Fc conjugates for targeted delivery: a modular chemoenzymatic approach. ACS Chem. Biol. 10, 2158–2165 (2015).

    Article  CAS  PubMed  Google Scholar 

  30. Leonidova, A. et al. In vivo demonstration of an active tumor pretargeting approach with peptide nucleic acid bioconjugates as complementary system. Chem. Sci. 6, 5601–5616 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mahal, L. K., Yarema, K. J. & Bertozzi, C. R. Engineering chemical reactivity on cell surfaces through oligosaccharide biosynthesis. Science 276, 1125–1128 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Kayser, H. et al. Biosynthesis of a nonphysiological sialic acid in different rat organs, using N-propanoyl-d-hexosamines as precursors. J. Biol. Chem. 267, 16934–16938 (1992).

    Article  CAS  PubMed  Google Scholar 

  33. Chandra, R. A., Douglas, E. S., Mathies, R. A., Bertozzi, C. R. & Francis, M. B. Programmable cell adhesion encoded by DNA hybridization. Angew. Chem., Int. Ed. 45, 896–901 (2006).

    Article  CAS  Google Scholar 

  34. Shi, P. et al. Poylvalent display of biomolecules on live cells. Angew. Chem. Int. Ed. 130, 6916–6920 (2018).

    Article  Google Scholar 

  35. Saccà, B. et al. Orthogonal protein decoration of DNA origami. Angew. Chem. Int. Ed. 49, 9378–9383 (2010).

    Article  CAS  Google Scholar 

  36. Taylor, M. J., Husain, K., Gartner, Z. J., Mayor, S. & Vale, R. D. A DNA-based T cell receptor reveals a role for receptor clustering in ligand discrimination. Cell 169, 108–119.e20 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Lovendahl, K. N., Hayward, A. N. & Gordon, W. R. Sequence-directed covalent protein–DNA linkages in a single step using HUH-tags. J. Am. Chem. Soc. 139, 7030–7035 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Griffin, B. A., Adams, S. R. & Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science 281, 269–272 (1998).

    Article  CAS  PubMed  Google Scholar 

  39. Spagnuolo, C. C., Vermeij, R. J. & Jares-Erijman, E. A. Improved photostable FRET-competent biarsenical−tetracysteine probes based on fluorinated fluoresceins. J. Am. Chem. Soc. 128, 12040–12041 (2006).

    Article  CAS  PubMed  Google Scholar 

  40. Baalmann, M., Best, M. & Wombacher, R. in Noncanonical Amino Acids: Methods and Protocols (ed Lemke, E. A.) 365–387 (Springer, 2018).

  41. Chen, I., Howarth, M., Lin, W. & Ting, A. Y. Site-specific labeling of cell surface proteins with biophysical probes using biotin ligase. Nat. Methods 2, 99–104 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. Reinhardt, U., Lotze, J., Morl, K., Beck-Sickinger, A. G. & Seitz, O. Rapid covalent fluorescence labeling of membrane proteins on live cells via coiled-coil templated acyl transfer. Bioconjugate Chem. 26, 2106–2117 (2015).

    Article  CAS  Google Scholar 

  43. Reinhardt, U. et al. Peptide-templated acyl transfer: a chemical method for the labeling of membrane proteins on live cells. Angew. Chem. Int. Ed. 53, 10237–10241 (2014).

    Article  CAS  Google Scholar 

  44. Litowski, J. R. & Hodges, R. S. Designing heterodimeric two-stranded α-helical coiled-coils. Effects of hydrophobicity and α-helical propensity on protein folding, stability, and specificity. J. Biol. Chem. 277, 37272–37279 (2002).

    Article  CAS  PubMed  Google Scholar 

  45. Yano, Y. et al. Coiled-coil tag—probe system for quick labeling of membrane receptors in living cells. ACS Chem. Biol. 3, 341–345 (2008).

    Article  CAS  PubMed  Google Scholar 

  46. Dawson, P. E., Muir, T. W., Clark-Lewis, I. & Kent, S. B. H. Synthesis of proteins by native chemical ligation. Science 266, 776–779 (1994).

    Article  CAS  PubMed  Google Scholar 

  47. Chang, P. V. et al. Copper-free click chemistry in living animals. Proc. Natl Acad. Sci. USA 107, 1821–1826 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rohde, H., Schmalisch, J., Harpaz, Z., Diezmann, F. & Seitz, O. Ascorbate as an alternative to thiol additives in native chemical ligation. ChemBioChem 12, 1396–1400 (2011).

    Article  CAS  PubMed  Google Scholar 

  49. Haase, C. & Seitz, O. Internal cysteine accelerates thioester-based peptide ligation. Eur. J. Org. Chem. 2009, 2096–2101 (2009).

    Article  CAS  Google Scholar 

  50. Roskoski, R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol. Res. 79, 34–74 (2014).

    Article  CAS  PubMed  Google Scholar 

  51. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. Yamaguchi, T., Murata, Y., Fujiyoshi, Y. & Doi, T. Regulated interaction of endothelin B receptor with caveolin-1. Eur. J. Biochem. 270, 1816–1827 (2003).

    Article  CAS  PubMed  Google Scholar 

  53. Mazzuca, M. Q. & Khalil, R. A. Vascular endothelin receptor type B: structure, function and dysregulation in vascular disease. Biochem. Pharmacol. 84, 147–162 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gradišar, H. & Jerala, R. De novo design of orthogonal peptide pairs forming parallel coiled-coil heterodimers. J. Pept. Sci. 17, 100–106 (2011).

    Article  PubMed  CAS  Google Scholar 

  55. Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A. & Tyagi, S. Imaging individual mRNA molecules using multiple singly labeled probes. Nat. Methods 5, 877–879 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Yurke, B., Turberfield, A. J., Mills, A. P., Simmel, F. C. & Neumann, J. L. A DNA-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000).

    Article  CAS  PubMed  Google Scholar 

  57. Zhang, D. Y. & Seelig, G. Dynamic DNA nanotechnology using strand-displacement reactions. Nat. Chem. 3, 103 (2011).

    Article  CAS  PubMed  Google Scholar 

  58. Lotze, J. et al. Time-resolved tracking of separately internalized neuropeptide Y2 receptors by two-color pulse-chase. ACS Chem. Biol. 13, 618–627 (2018).

    Article  CAS  PubMed  Google Scholar 

  59. Olson, X., Kotani, S., Yurke, B., Graugnard, E. & Hughes, W. L. Kinetics of DNA strand displacement systems with locked nucleic acids. J. Phys. Chem. B 121, 2594–2602 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schweller, R. M. et al. Multiplexed in situ immunofluorescence using dynamic DNA complexes. Angew. Chem. Int. Ed. 51, 9292–9296 (2012).

    Article  CAS  Google Scholar 

  61. Bandlow, V. et al. Spatial screening of hemagglutinin on influenza A virus particles: sialyl-LacNAc displays on DNA and PEG scaffolds reveal the requirements for bivalency enhanced interactions with weak monovalent binders. J. Am. Chem. Soc. 139, 16389–16397 (2017).

    Article  CAS  PubMed  Google Scholar 

  62. Liang, S. I. et al. Phosphorylated EGFR dimers are not sufficient to activate ras. Cell Rep 22, 2593–2600 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Thomas, F., Boyle, A. L., Burton, A. J. & Woolfson, D. N. A set of de novo designed parallel heterodimeric coiled coils with quantified dissociation constants in the micromolar to sub-nanomolar regime. J. Am. Chem. Soc. 135, 5161–5166 (2013).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the Deutsche Forschungsgemeinschaft (SPP 1623 and SFB 765). M.D.B. is a fellow of the International Max Planck Research School for Molecular Life Sciences (IMPRS-LS). P.W. is a member of the Graduate School Leipzig School of Natural Sciences—Building with Molecules and Nano-objects. We thank J. Lotze (University Leipzig), S. Korte and A. Herrmann (Humboldt University Berlin) for help with confocal laser scanning microscopy and K. Rurack (Bundesanstalt für Materialforschung und Prüfung, Berlin) for providing access to flow cytometry.

Author information

Authors and Affiliations

Authors

Contributions

G.C.G., K.G. and P.W. performed the experiments. G.C.G, K.G. and O.S. designed the experiments and analysed the data. M.D.B. and S.B. constructed the stable CHO cell lines. O.S. conceived the experiments. P.W. and A.G.B-S. designed experiments for labelling of ETBR. All authors discussed the results and contributed to the preparation and editing of the manuscript.

Corresponding author

Correspondence to Oliver Seitz.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Synthesis of thioester-linked K3 and P2 peptide-PNA conjugates via SPPS and strained cycloaddition.

a, Solid-phase synthesis affords K3 and P2 peptides containing thioester-linked azido hexanoic acid. b, After solid-phase assembly of PNA strands by using Fmoc/Bhoc-protected PNA monomers, PNA is cleaved by TFA treatment and submitted to an in-solution coupling with ALO (pictured), which provides the ALO-PNA conjugate. c, Strain-promoted azide-alkyne cycloaddition produces the thioester-linked PNA-peptide conjugates.

Extended Data Fig. 2 Time course experiment of transfer reaction between PNA11-K3 and Cys-E3.

a, UPLCTM traces of reaction time points. UPLC gradient 20-50 % in 4 min, detection at 260 nM. Experiment was repeated three times with similar results b) Structure of S-acylated side product PNA11-Cys(PNA11)-E3.

Extended Data Fig. 3 Analysis of PNA:DNA duplex stability by fluorescence microscope imaging of Cys-E3-hY2R tagged with PNA11 or PNA16 and hybridized with complementary FAM-DNA at 37 °C.

a, HEK293-Cys-E3-hY2R labelled with an 11mer duplex (PNA11-K3 tagging and FAM-DNA17 hybridisation). b, HEK293-Cys-E3-hY2R labelled with a 16mer duplex (PNA16-K3 tagging and FAM-DNA22 hybridisation). Stably transfected HEK293-Cys-E3-hY2R cells42,58 labelled with Hoechst33342 (shown in blue) were treated with PNA11-K3 or PNA16-K3 (100 nM) in buffer (HBSS with 0.1 mM TCEP, 20 mM HEPES, pH 7) for 4 min. After washing with basic buffer (200 mM NaHCO3 in DPBS, pH 8.4) for 1.5 min, complementary FAM-DNA (1 µM) containing 6mer overhangs (FAM-DNA17 or FAM-DNA22) was added for 5 min in 20 mM HEPES buffer. Cells were washed and microscopic studies were performed in OptiMEM at 37 °C. Hoechst33342 (λex:365, λem:420), 5/6-Carboxyfluorescein (FAM) (λex: 470/40, λem:525/50). Scale bar= 10 µm. See Supplementary 9.3 for full method and DNA sequences. Experiment was repeated 3 times independently with similar results.

Extended Data Fig. 4 Fluorescence microscopy analysis of Signal to Noise Ratio (SNR) of PNA15 labelled Cys-P1-EGFR-eYFP CHO cells stained with either one or five Cy7 fluorophores.

After PNA15 labelling, cells were incubated with 50 nM Complex I (1x Cy7: adaptor DNA-33mer with a single Cy7-15mer) or 50 nM Complex II (5x Cy7: adaptor DNA-105mer with five Cy7-15mers) in HBSS-BB before washing with HBSS-BB and imaging. From three independent experiments, 6-8 cells were analysed by line intensity profiles spanning a whole cell. For each line intensity profile, Cy7 or YFP signal was calculated as the max peak height at the membrane regions, and the noise calculated as the standard deviation of the signal from an empty background region. Dot plot is presented as the mean +/− SD with each point representing SNR for one cell (n = 20).

Extended Data Fig. 5 Spinning disk confocal microscopy analysis of PNA enabled reversible labelling of Cys-P1-EGFR-eYFP on CHO cells.

a, After staining of nuclei with Hoechst 33342, serum starved Cys-P1-EGFR-eYFP cells were treated with PNA15-P2 in HBSS for 4 minutes. Cells were then incubated with 50 nM Complex III (adaptor DNA-105mer + five Atto565-DNA-23mers) in HBSS-BB for 4 min. b, Stimulation with EGF (100 nM) for 15 mins. c, Toehold mediated strand displacement of Atto565-23mer DNA with 300 nM displacement DNA-23mer in presence of 100 nM EGF for 2 ×5 min in HBSS at 30 °C. d, Hybridisation with 100 nM Atto647N-DNA-15mer, 3 min. Excitation times: ATTO565: 200 ms YFP: 100 ms, Hoechst 33342:100 ms Atto647N: 300 ms. Diode lasers: Hoechst 33342) 405 nm; YFP) 488 nm; Atto565) 561 nm; Atto647N) 640 nm. Dichroic emission filters Hoechst 33342) λem = 460 ± 50 nm; YFP) λem 470 ± 24 nm; Atto565) λem 600 ± 50 nm. Atto647) λem = 700 ± 75 nm. Scale bar= 10μm. Experiments were repeated 3 times independently with similar results.

Supplementary Information

Supplementary information

Supplementary discussion, figures and tables.

Reporting Summary

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gavins, G.C., Gröger, K., Bartoschek, M.D. et al. Live cell PNA labelling enables erasable fluorescence imaging of membrane proteins. Nat. Chem. 13, 15–23 (2021). https://doi.org/10.1038/s41557-020-00584-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00584-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing