Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A metal–organic framework that exhibits CO2-induced transitions between paramagnetism and ferrimagnetism

Abstract

With adequate building blocks, metal–organic frameworks (MOFs) can combine magnetic ordering and porosity. This makes MOFs a promising platform for the development of stimuli-responsive materials that show drastically different magnetic properties depending on the presence or absence of guest molecules within their pores. Here we report a CO2-responsive magnetic MOF that converts from ferrimagnetic to paramagnetic on CO2 adsorption, and returns to the ferrimagnetic state on CO2 desorption. The ferrimagnetic material is a layered MOF with a [D+–A–D] formula, produced from the reaction of trifluorobenzoate-bridged paddlewheel-type diruthenium(ii) clusters as the electron donor (D) with diethoxytetracyanoquinodimethane as the electron acceptor (A). On CO2 uptake, it undergoes an in-plane electron transfer and a structural transition to adopt a [D–A–D] paramagnetic form. This magnetic phase change, and the accompanying modifications to the electronic conductivity and permittivity of the MOF, are electronically stabilized by the guest CO2 molecules accommodated in the framework.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structural modulation and magnetic sponge behaviour during the solvation and desolvation process.
Fig. 2: CO2 adsorption, variation of crystal structures and infrared spectra for compound 1.
Fig. 3: Crystal structures of CO2-accommodated phases.
Fig. 4: Variation of magnetic properties under CO2 adsorption.
Fig. 5: Electronic properties responding to the phase transitions.
Fig. 6: Theoretical study on the stability of 1CO2-II.

Similar content being viewed by others

Data availability

The data that support this work are available in the article and its Supplementary Information files. Further raw data are available from the corresponding authors upon reasonable request. X-ray crystallographic data have been deposited as CIFs at the Cambridge Crystallographic Data Centre (http://www.ccdc.cam.ac.uk/) with CCDC numbers 1914693 (1-DCM), 1914694 (1), 1914695 (1CO2-I) and 1914696 (1CO2-II). A copy of the data can be obtained free of charge via https://www.ccdc.cam.ac.uk/structures/. Source data are provided with this paper.

References

  1. Kurmoo, M. Magnetic metal–organic frameworks. Chem. Soc. Rev. 38, 1353–1379 (2009).

    Article  CAS  PubMed  Google Scholar 

  2. Dechambenoit, P. & Long, J. R. Microporous magnets. Chem. Soc. Rev. 40, 3249–3265 (2011).

    Article  CAS  PubMed  Google Scholar 

  3. Coronado, E. & Espallargas, G. M. Dynamic magnetic MOFs. Chem. Soc. Rev. 42, 1525–1539 (2013).

    Article  CAS  PubMed  Google Scholar 

  4. Espallargas, G. M. & Coronado, E. Magnetic functionalities in MOFs: from the framework to the pore. Chem. Soc. Rev. 47, 533–557 (2018).

    Article  Google Scholar 

  5. Miller, J. S. Magnetically ordered molecule-based materials. Chem. Soc. Rev. 40, 3266–3296 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Ohkoshi, S. et al. Photoinduced magnetization in copper octacyanomolybdate. J. Am. Chem. Soc. 128, 270–277 (2006).

    Article  CAS  PubMed  Google Scholar 

  7. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

    Article  CAS  PubMed  Google Scholar 

  8. Lottermoser, T. et al. Magnetic phase control by an electric field. Nature 430, 541–544 (2004).

    Article  CAS  PubMed  Google Scholar 

  9. Ohkoshi, S., Arai, K., Sato, Y. & Hashimoto, K. Humidity-induced magnetization and magnetic pole inversion in a cyano-bridged metal assembly. Nat. Mater. 3, 857–861 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Kurmoo, M., Kumagai, H., Chapman, K. W. & Kepert, C. J. Reversible ferromagnetic–antiferromagnetic transformation upon dehydration–hydration of the nanoporous coordination framework, [Co3(OH)2(C4O4)2]·3H2O. Chem. Commun. 24, 3012–3014 (2005).

    Article  CAS  Google Scholar 

  11. Kaneko, W., Ohba, M. & Kitagawa, S. A flexible coordination polymer crystal providing reversible structural and magnetic conversions. J. Am. Chem. Soc. 129, 13706–13712 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Yoshida, Y., Inoue, K., Kikuchi, K. & Kurmoo, M. Biomimetic transformation by a crystal of a chiral Mnii−Criii ferrimagnetic Prussian blue analogue. Chem. Mater. 28, 7029–7038 (2016).

    Article  CAS  Google Scholar 

  13. Wang, Z.-M., Zhang, Y.-J., Liu, T., Kurmoo, M. & Gao, S. [Fe3(HCOO)6]: a permanent porous diamond framework displaying H2/N2 adsorption, guest inclusion, and guest-dependent magnetism. Adv. Funct. Mater. 17, 1523–1536 (2007).

    Article  CAS  Google Scholar 

  14. Zeng, M.-H. et al. Nanoporous cobalt(ii) MOF exhibiting four magnetic ground states and changes in gas sorption upon post-synthetic modification. J. Am. Chem. Soc. 136, 4680–4688 (2014).

    Article  CAS  PubMed  Google Scholar 

  15. Zhang, J., Kosaka, W., Sugimoto, K. & Miyasaka, H. Magnetic sponge behavior via electronic state modulations. J. Am. Chem. Soc. 140, 5644–5652 (2018).

    Article  CAS  PubMed  Google Scholar 

  16. Navarro, J. A. R. et al. Guest-induced modification of a magnetically active ultramicroporous, gismondine-like, copper(ii) coordination network. J. Am. Chem. Soc. 130, 3978–3984 (2008).

    Article  CAS  PubMed  Google Scholar 

  17. Kaye, S. S., Choi, H. J. & Long, J. R. Generation and O2 adsorption studies of the microporous magnets CsNi[Cr(CN)6] (TC = 75 K) and Cr3[Cr(CN)6]2·6H2O (TN = 219 K). J. Am. Chem. Soc. 130, 16921–16925 (2008).

    Article  CAS  PubMed  Google Scholar 

  18. Bloch, E. D. et al. Hydrocarbon separations in a metal–organic framework with open iron(ii) coordination sites. Science 335, 1606–1610 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Coronado, E., Gimenez-Marques, M., Espallargas, G. M. & Brammer, L. Tuning the magneto-structural properties of non-porous coordination polymers by HCl chemisorption. Nat. Commun. 3, 828 (2012).

    Article  PubMed  CAS  Google Scholar 

  20. Kosaka, W. et al. Gas-responsive porous magnet distinguishes the electron spin of molecular oxygen. Nat. Commun. 9, 5420 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murphy, M. J. et al. Guest programmable multistep spin crossover in a porous 2‑D Hofmann-type material. J. Am. Chem. Soc. 139, 1330–1335 (2017).

    Article  CAS  PubMed  Google Scholar 

  22. Halder, G. J., Kepert, C. J., Moubaraki, B., Murray, K. S. & Cashion, J. D. Guest-dependent spin crossover in a nanoporous molecular framework material. Science 298, 1762–1765 (2002).

    Article  CAS  PubMed  Google Scholar 

  23. Neville, S. M. et al. Guest tunable structure and spin crossover properties in a nanoporous coordination framework material. J. Am. Chem. Soc. 131, 12106–12108 (2009).

    Article  CAS  PubMed  Google Scholar 

  24. Coronado, E., Gimenez-Marques, M., Espallargas, G. M., Rey, F. & Vitorica-Yrezabal, I. J. Spin-crossover modification through selective CO2 sorption. J. Am. Chem. Soc. 135, 15986–15989 (2013).

    Article  CAS  PubMed  Google Scholar 

  25. Zhou, H. C., Long, J. R. & Yaghi, O. M. Introduction to metal–organic frameworks. Chem. Rev. 112, 673–674 (2012).

    CAS  PubMed  Google Scholar 

  26. Kitagawa, S., Kitaura, R. & Noro, S. Functional porous coordination polymers. Angew. Chem. Int. Ed. 43, 2334–2375 (2004).

    Article  CAS  Google Scholar 

  27. Chu, S. Carbon capture and sequestration. Science 325, 1599 (2009).

    Article  CAS  PubMed  Google Scholar 

  28. Boot-Handford, M. E. et al. Carbon capture and storage update. Energy Environ. Sci. 7, 130–189 (2014).

    Article  CAS  Google Scholar 

  29. Liao, P. Q., Huang, N. Y., Zhang, W. X., Zhang, J. P. & Chen, X. M. Controlling guest conformation for efficient purification of butadiene. Science 356, 1193–1196 (2017).

    Article  CAS  PubMed  Google Scholar 

  30. Kong, X. et al. Mapping of functional groups in metal–organic frameworks. Science 341, 882–885 (2013).

    Article  CAS  PubMed  Google Scholar 

  31. Farha, O. K. & Hupp, J. T. Rational design, synthesis, purification, and activation of metal−organic framework materials. Acc. Chem. Res. 43, 1166–1175 (2010).

    Article  CAS  PubMed  Google Scholar 

  32. McDonald, T. M. et al. Cooperative insertion of CO2 in diamine-appended metal–organic frameworks. Nature 519, 303–308 (2015).

    Article  CAS  PubMed  Google Scholar 

  33. Sumida, K. et al. Carbon dioxide capture in metal–organic frameworks. Chem. Rev. 112, 724–781 (2012).

    Article  CAS  PubMed  Google Scholar 

  34. Thallapally, P. K. et al. Flexible (breathing) interpenetrated metal−organic frameworks for CO2 separation applications. J. Am. Chem. Soc. 130, 16842–16843 (2008).

    Article  CAS  PubMed  Google Scholar 

  35. Carrington, E. J. et al. Solvent-switchable continuous-breathing behaviour in a diamondoid metal–organic framework and its influence on CO2 versus CH4 selectivity. Nat. Chem. 9, 882–889 (2017).

    Article  CAS  PubMed  Google Scholar 

  36. Diercks, C. S., Liu, Y., Cordova, K. E. & Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17, 301–307 (2018).

    Article  CAS  PubMed  Google Scholar 

  37. Niu, K. et al. A spongy nickel–organic CO2 reduction photocatalyst for nearly 100% selective CO production. Sci. Adv. 3, 1700921 (2017).

    Article  CAS  Google Scholar 

  38. Miyasaka, H. Control of charge transfer in donor/acceptor metal–organic frameworks. Acc. Chem. Res. 46, 248–257 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. Miyasaka, H. in Materials and Energy (eds Vardeny, Z. V. & Wohlgenannt, M.) Ch. 4, 169−205 (World Scientific, 2018).

  40. Uemura, K., Kitagawa, S., Fukui, K. & Saito, K. A contrivance for a dynamic porous framework: cooperative guest adsorption based on square grids connected by amide−amide hydrogen bonds. J. Am. Chem. Soc. 126, 3817–3828 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Kosaka, W. et al. Magnetic sponge with neutral–ionic phase transitions. Adv. Sci. 5, 1700526 (2018). (1−10).

    Article  CAS  Google Scholar 

  42. Cotton, F. A. & Walton, R. A. Multiple Bonds Between Metal Atoms 2nd edn (Oxford Univ. Press, 1993).

  43. Miyasaka, H. et al. Tuning of the ionization potential of paddlewheel diruthenium(ii,ii) complexes with fluorine atoms on the benzoate ligands. Dalton Trans. 40, 673–682 (2011).

    Article  CAS  PubMed  Google Scholar 

  44. Kosaka, W., Itoh, M. & Miyasaka, H. The effect of chlorine and fluorine substitutions on tuning the ionization potential of benzoate-bridged paddlewheel diruthenium(ii, ii) complexes. Dalton Trans. 44, 8156–8168 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Kosaka, W., Yamagishi, K., Zhang, J. & Miyasaka, H. Gate-opening gas adsorption and host–guest interacting gas trapping behavior of porous coordination polymers under applied a.c. electric fields. J. Am. Chem. Soc. 136, 12304–12313 (2014).

    Article  CAS  PubMed  Google Scholar 

  46. Hirshfeld, F. L. Bonded-atom fragments for describing molecular charge densities. Theoret. Chim. Acta 44, 129–138 (1977).

    Article  CAS  Google Scholar 

  47. Yanai, N. et al. Gas detection by structural variations of fluorescent guest molecules in a flexible porous coordination polymer. Nat. Mater. 10, 787–793 (2011).

    Article  CAS  PubMed  Google Scholar 

  48. Kreno, L. E. et al. Metal–organic framework materials as chemical sensors. Chem. Rev. 112, 1105–1125 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. Miyasaka, H. et al. Tuning of the ionization potential of paddlewheel diruthenium (ii, ii) complexes with fluorine atoms on the benzoate ligands. Dalton Trans. 40, 673–682 (2011).

    Article  CAS  PubMed  Google Scholar 

  50. Boudreaux, E. A. & Mulay, L. N. Theory and Application of Molecular Paramagnetism (John Wiley & Sons, 1976).

  51. Sheldrick, G. M. SHELXT: integrating space group determination and structure solution. Acta Crystallogr. A 70, C1437 (2014).

    Article  Google Scholar 

  52. Momma, K. & Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  53. Spek, A. L. Single-crystal structure validation with the program PLATON. J. Appl. Cryst. 36, 7–13 (2003).

    Article  CAS  Google Scholar 

  54. Kitagawa, Y. et al. Theoretical studies on effects of hydrogen bonds attaching to cysteine ligands on 4Fe–4S clusters. Int. J. Quant. Chem. 108, 2881–2887 (2008).

    Article  CAS  Google Scholar 

  55. Roy, L. E., Hay, P. J. & Martin, R. L. Revised basis sets for the LANL effective core potentials. J. Chem. Theory Comput. 4, 1029–1031 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Fukutome, H. The unrestricted Hartree–Fock theory of chemical reactions. I: The electronic instabilities in the chemical reactions and the solutions of the unrestricted SCF LCAO MO equation for the homopolar two-center two-electron system. Prog. Theoret. Phys 47, 1156–1180 (1972).

    Article  CAS  Google Scholar 

  57. Szabo, A. & Ostlund, N. S. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, 1996).

  58. Frisch, M. J. et al. Gaussian 09 Revision C.01 (Gaussian, Inc., 2009).

Download references

Acknowledgements

We thank H. Sato for his assistance with the single-crystal X-ray crystallography of the CO2-accommodated compounds. This work was supported by a Grant‐in‐Aid for Scientific Research (nos 16H02269, 18K19050, 18K05055, 18H05208, 19K05401, 20K15294 and 20H00381) from MEXT, Japan, and on Innovative Areas (‘π‐System Figuration’ Area 2601, no. 17H05137) from JSPS, Japan, the GIMRT programme, the E‐IMR project and a Grant Fund for Research and Education (no. J190001232). J.Z. is thankful for the JSPS KAKENHI (No. 17J02497).

Author information

Authors and Affiliations

Authors

Contributions

J.Z. and H.M. formulated the project. J.Z. performed the experiments. W.K. established the experimental set-ups, especially the measurements with the gases, and supported the experiments. Y.K. performed the theoretical calculations. All the authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Hitoshi Miyasaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–43, discussion and Tables 1–8 (except Table 6 as separate file).

Supplementary Table 6

Atomic coordinates for Models A–D.

Supplementary Data

Cif for 1-DCM

Supplementary Data

Cif for 1

Supplementary Data

Cif for 1-CO2-I

Supplementary Data

Cif for 1-CO2-II

Source data

Source Data Fig. 1

Source data for Fig. 1f,1g.

Source Data Fig. 2

Source data for Fig. 2a–f.

Source Data Fig. 4

Source data for Fig. 4a–g.

Source Data Fig. 5

Source data for Fig. 5a–c.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Kosaka, W., Kitagawa, Y. et al. A metal–organic framework that exhibits CO2-induced transitions between paramagnetism and ferrimagnetism. Nat. Chem. 13, 191–199 (2021). https://doi.org/10.1038/s41557-020-00577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-020-00577-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing