Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Harnessing chemical energy for the activation and joining of prebiotic building blocks

A Publisher Correction to this article was published on 18 November 2020

This article has been updated

Abstract

Life is an out-of-equilibrium system sustained by a continuous supply of energy. In extant biology, the generation of the primary energy currency, adenosine 5′-triphosphate and its use in the synthesis of biomolecules require enzymes. Before their emergence, alternative energy sources, perhaps assisted by simple catalysts, must have mediated the activation of carboxylates and phosphates for condensation reactions. Here, we show that the chemical energy inherent to isonitriles can be harnessed to activate nucleoside phosphates and carboxylic acids through catalysis by acid and 4,5-dicyanoimidazole under mild aqueous conditions. Simultaneous activation of carboxylates and phosphates provides multiple pathways for the generation of reactive intermediates, including mixed carboxylic acid–phosphoric acid anhydrides, for the synthesis of peptidyl–RNAs, peptides, RNA oligomers and primordial phospholipids. Our results indicate that unified prebiotic activation chemistry could have enabled the joining of building blocks in aqueous solution from a common pool and enabled the progression of a system towards higher complexity, foreshadowing today’s encapsulated peptide–nucleic acid system.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Joining of prebiotic building blocks driven by common activation chemistry in aqueous solution.
Fig. 2: Proposed reaction scheme of the activation chemistry.

Data availability

All data generated or analysed during this study are included in the manuscript and the Supplementary Information.

Change history

  • 18 November 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.

References

  1. 1.

    Verlander, M. S., Lohrmann, R. & Orgel, L. E. Catalysts for the self-polymerization of adenosine cyclic 2′,3′-phosphate. J. Mol. Evol. 2, 303–316 (1973).

    CAS  Google Scholar 

  2. 2.

    Lambert, J.-F. Adsorption and polymerization of amino acids on mineral surfaces: A review. Orig. Life Evol. Biosph. 38, 211–242 (2008).

    CAS  Google Scholar 

  3. 3.

    Kanavarioti, A., Monnard, P.-A. & Deamer, D. W. Eutectic phase in ice facilitate nonenzymatic nucleic acid synthesis. Astrobiology 1, 271–281 (2001).

    CAS  Google Scholar 

  4. 4.

    Canavelli, P., Islam, S. & Powner, M. Peptide ligation by chemoselective aminonitrile coupling in water. Nature 571, 546–549 (2019).

    CAS  Google Scholar 

  5. 5.

    Lohrmann, R. & Orgel, L. E. Prebiotic synthesis: phosphorylation in aqueous solution. Science 161, 64–66 (1968).

    CAS  Google Scholar 

  6. 6.

    Ibanez, J. D., Kimball, A. P. & Oró, J. Possible prebiotic condensation of mononucleotides by cyanamide. Science 173, 444–446 (1971).

    CAS  Google Scholar 

  7. 7.

    Leman, L., Orgel, L. E. & Ghadiri, M. R. Carbonyl sulfide-mediated prebiotic formation of peptides. Science 306, 283–286 (2004).

    CAS  Google Scholar 

  8. 8.

    Leman, L., Orgel, L. E. & Ghadiri, M. R. Amino acid dependent formation of phosphate anhydrides in water mediated by carbonyl sulfide. J. Am. Chem. Soc. 128, 20–21 (2006).

    CAS  Google Scholar 

  9. 9.

    Tsanakopoulou, M. & Sutherland, J. D. Cyanamide as a prebiotic phosphate activating agent – catalysis by simple 2-oxoacid salts. Chem. Commun. 53, 11893–11896 (2017).

    CAS  Google Scholar 

  10. 10.

    Liu, Z. et al. Tuning the reactivity of nitriles using Cu(ii) catalysis – potentially prebiotic activation of nucleotides. Chem. Sci. 9, 7053–7057 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Orgel, L. E. Evolution of the genetic apparatus. J. Mol. Biol. 38, 381–393 (1968).

    CAS  Google Scholar 

  12. 12.

    Remijan, A. J., Hollis, J. M., Lovas, F. J., Plusquellic, D. F. & Jewell, P. R. Interstellar isomers: the importance of bonding energy differences. Astrophys. J. 632, 333–339 (2005).

    CAS  Google Scholar 

  13. 13.

    Xiang, Y.-B., Drenkard, S., Baumann, K., Hickey, D. & Eschenmoser, A. Chemie von α-aminonitrilen 12. Mitteilung. Sondierungen über thermische umwandlungen von α-aminonitrilen. Helv. Chim. Acta 77, 2209–2250 (1994).

    CAS  Google Scholar 

  14. 14.

    Xu, J. et al. Photochemical reductive homologation of hydrogen cyanide using sulfite and ferrocyanide. Chem. Commun. 54, 5566–5569 (2018).

    CAS  Google Scholar 

  15. 15.

    Mariani, A., Russell, D. A., Javelle, T. & Sutherland, J. D. A light-releasable potentially prebiotic nucleotide activating agent. J. Am. Chem. Soc. 140, 8657–8661 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Mullen, L. B. & Sutherland, J. D. Simultaneous nucleotide activation and synthesis of amino acid amides by a potentially prebiotic multi-component reaction. Angew. Chem. Int. Ed. 46, 8063–8066 (2007).

    CAS  Google Scholar 

  17. 17.

    Pirrung, M. C. & Sarma, K. D. Multicomponent reactions are accelerated in water. J. Am. Chem. Soc. 126, 444–445 (2004).

    CAS  Google Scholar 

  18. 18.

    Paprocki, D., Koszelewski, D., Walde, P. & Ostaszewski, R. Efficient Passerini reactions in an aqueous vesicle system. RSC Adv. 5, 102828–102835 (2015).

    CAS  Google Scholar 

  19. 19.

    Sung, K. & Chen, C.-C. Kinetics and mechanism of acid-catalysed hydrolysis of cyclohexyl isonitrile and pKa determination of N-cyclohexylnitrilium ion. Tetrahedron Lett. 42, 4845–4848 (2001).

    CAS  Google Scholar 

  20. 20.

    Lim, Y.-Y. & Stein, A. R. Acid-catalysed solvolysis of isonitriles. I. Can. J. Chem. 49, 2455–2459 (1971).

    Google Scholar 

  21. 21.

    Biron, J., Parkes, A., Pascal, R. & Sutherland, J. D. Expeditious, potentially primordial, aminoacylation of nucleotides. Angew. Chem. Int. Ed. 117, 6889–6892 (2005).

    Google Scholar 

  22. 22.

    Bowler, F. R. et al. Prebiotically plausible oligoribonucleotide ligation facilitated by chemoselective acetylation. Nat. Chem. 5, 383–389 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Jencks, W. P. & Carriuolo, J. Imidazole catalysis. II. Acyl transfer and the reactions of acetyl imidazole with water and oxygen anions. J. Biol. Chem. 234, 1272–1279 (1959).

    CAS  Google Scholar 

  24. 24.

    Lacey, J. C. Jr. & White, W. E. Jr. Aminoacyl transfer: chemical conversion of an aminoacyl adenylate to an imidazolide. Biochem. Biophys. Res. Commun. 47, 565–573 (1972).

    CAS  Google Scholar 

  25. 25.

    Ferris, J. P. & Kuder, J. E. Chemical evolution. III. The photochemical conversion of enaminonitriles to imidazoles. J. Am. Chem. Soc. 92, 2527–2533 (1970).

    CAS  Google Scholar 

  26. 26.

    Oró, J. & Kimball, A. P. Synthesis of purines under possible primitive earth conditions. I. Adenine from hydrogen cyanide. Arch. Biochem. Biophys. 94, 217–227 (1961).

    Google Scholar 

  27. 27.

    Fahrenbach, A. et al. Common and potentially prebiotic origin for precursors of nucleotide synthesis and activation. J. Am. Chem. Soc. 139, 8780–8783 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Hudson, J. S. et al. A unified mechanism for abiotic adenine and purine synthesis in formamide. Angew. Chem. Int. Ed. 51, 5134–5137 (2012).

    CAS  Google Scholar 

  29. 29.

    Mariani, A. & Sutherland, J. D. Non-enzymatic RNA backbone proofreading through energy-dissipative recycling. Angew. Chem. Int. Ed. 56, 6563–6566 (2017).

    CAS  Google Scholar 

  30. 30.

    Danger, G. et al. 5(4H)‐Oxazolones as intermediates in the carbodiimide‐ and cyanamide‐promoted peptide activations in aqueous solution. Angew. Chem. Int. Ed. 52, 611–614 (2013).

    CAS  Google Scholar 

  31. 31.

    Liu, Z., Beaufils, D., Rossi, J. & Pascal, R. Evolutionary importance of the intramolecular pathways of hydrolysis of phosphate ester mixed anhydrides with amino acids and peptides. Sci. Rep. 4, 7440 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Liu, Z., Rigger, L., Rossi, J., Sutherland, J. D. & Pascal, R. Mixed anhydride intermediates in the reaction of 5(4H)‐oxazolones with phosphate esters and nucleotides. Chem. Eur. J. 22, 14940–14949 (2016).

    CAS  Google Scholar 

  33. 33.

    Tamura, K. & Schimmel, P. R. Chiral-selective aminoacylation of an RNA minihelix. Science 305, 1253 (2004).

    CAS  Google Scholar 

  34. 34.

    Tamura, K. & Schimmel, P. R. Chiral-selective aminoacylation of an RNA minihelix: mechanistic features and chiral suppression. Proc. Natl Acad. Sci. USA 103, 13750–13752 (2006).

    CAS  Google Scholar 

  35. 35.

    Beaufils, D., Jepaul, S., Liu, Z., Boiteau, L. & Pascal, R. The activation of free dipeptides promoted by strong activating agents in water does not yield diketopiperazines. Orig. Life Evol. Biosph. 46, 19–30 (2016).

    CAS  Google Scholar 

  36. 36.

    Patel, B. H., Percivalle, C., Ritson, D. J., Duffy, C. D. & Sutherland, J. D. Common origins of RNA, protein and lipid precursors in a cyanosulfidic protometabolism. Nat. Chem. 7, 301–307 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Gibard, C., Bhowmik, S., Karki, M., Kim, E.-K. & Krishnamurthy, R. Phosphorylation, oligomerization and self-assembly in water under potential prebiotic conditions. Nat. Chem. 10, 212–217 (2018).

    CAS  Google Scholar 

  38. 38.

    Bonfio, C. et al. Length-selective synthesis of diacylglycerol-phosphates through energy-dissipative cycling. J. Am. Chem. Soc. 141, 3934–3939 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Sutherland, J. D. The origin of life—out of the blue. Angew. Chem. Int. Ed. 55, 104–121 (2016).

    CAS  Google Scholar 

  40. 40.

    Lorenz, M. R. et al. Proton gradients and pH oscillations emerge from heat flow at the microscale. Nat. Commun. 8, 1897 (2017).

    Google Scholar 

  41. 41.

    Cech, T. R. Evolution of biological catalysis: ribozyme to RNP enzyme. Cold Spring Harbor Symp. Quant. Biol. 74, 11–16 (2009).

    CAS  Google Scholar 

  42. 42.

    Hein, J. E., Tse, E. & Blackmond, D. G. A route to enantiopure RNA precursors from nearly racemic starting materials. Nat. Chem. 3, 704–706 (2011).

    CAS  Google Scholar 

  43. 43.

    Blain, J. C. & Szostak, J. W. Progress towards synthetic cells. Annu. Rev. Biochem. 83, 615–640 (2014).

    CAS  Google Scholar 

  44. 44.

    Sutherland, J. D. Opinion: Studies on the origin of life – the end of the beginning. Nat. Rev. Chem. 1, 0012 (2017).

    CAS  Google Scholar 

  45. 45.

    Sheehan, J. C. & Yang, D.-D. H. The use of N-formyl amino acids in peptide synthesis. J. Am. Chem. Soc. 80, 1154–1158 (1958).

    CAS  Google Scholar 

  46. 46.

    Kim, K.-H., Martin, Y., Otis, E. & Mao, J. Inhibition of iodine-125 labeled ristocetin binding to Micrococcus luteus cells by the peptides related to bacterial cell wall mucopeptide precursors: quantitative structure–activity relationships. J. Med. Chem. 32, 84–93 (1989).

    CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Medical Research Council (no. MC_UP_A024_1009 to J.D.S.) and the Simons Foundation (no. 290362 to J.D.S.). We thank all J.D.S. group members for fruitful discussions. We thank R. Pascal for helpful suggestions.

Author information

Affiliations

Authors

Contributions

Z.L., L.-F.W., J.X., C.B. and D.A.R. carried out the experiments under the supervision of J.D.S. All authors wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to John D. Sutherland.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–68 and Tables 1–3.

Supplementary Data

Statistical Source Data for Supplementary Figs. 5, 9, 10, 32, 37 and 65.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Wu, LF., Xu, J. et al. Harnessing chemical energy for the activation and joining of prebiotic building blocks. Nat. Chem. 12, 1023–1028 (2020). https://doi.org/10.1038/s41557-020-00564-3

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing