Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding

Abstract

Delocalized Frenkel excitons—coherently shared excitations among chromophores—are responsible for the remarkable efficiency of supramolecular light-harvesting assemblies within photosynthetic organisms. The translation of nature’s design principles to applications in optoelectronic devices has been limited by the fragility of the supramolecular structures used and the delicate nature of Frenkel excitons, particularly under mildly changing solvent conditions and elevated temperatures and upon deposition onto solid substrates. Here, we overcome those functionalization barriers through composition of stable supramolecular light-harvesting nanotubes enabled by tunable (~4.3–4.9 nm), uniform (±0.3 nm) cage-like scaffolds. High-resolution cryogenic electron microscopy, combined with scanning electron microscopy, broadband femtosecond transient absorption spectroscopy and near-field scanning optical microscopy revealed that excitons within the cage-like scaffolds are robust, even under extreme heat stress, and control over nanocomposite dimensions is maintained on solid substrates. Our bio-inspired nanocomposites provide a general framework for the development of next-generation organic devices made from stable supramolecular materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Supramolecular LHNTs assembled from the cyanine dye derivative C8S3.
Fig. 2: Stable supramolecular nanocomposites via cage-like scaffold design.
Fig. 3: Robust Frenkel excitons in supramolecular nanocomposites despite extreme heat stress.
Fig. 4: Discrete tunability of supramolecular nanocomposites’ scaffold dimensions in solution and on substrate.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. 1.

    Sheikh, A. D. et al. Effects of high temperature and thermal cycling on the performance of perovskite solar cells: acceleration of charge recombination and deterioration of charge extraction. ACS Appl. Mater. Interfaces 9, 35018–35029 (2017).

    CAS  PubMed  Google Scholar 

  2. 2.

    Peters, I. M. & Buonassisi, T. The impact of global warming on silicon PV energy yield in 2100. Preprint at https://arxiv.org/abs/1908.00622 (2019).

  3. 3.

    Dash, P. K. & Gupta, N. C. Effect of temperature on power output from different commercially available photovoltaic modules. J. Eng. Res. Appl. 5, 148–151 (2015).

    Google Scholar 

  4. 4.

    Weiss, L. R. et al. Strongly exchange-coupled triplet pairs in an organic semiconductor. Nat. Phys. 13, 176–181 (2017).

    CAS  Google Scholar 

  5. 5.

    Pun, A. B. et al. Ultra-fast intramolecular singlet fission to persistent multiexcitons by molecular design. Nat. Chem. 11, 821–828 (2019).

    CAS  PubMed  Google Scholar 

  6. 6.

    Einzinger, M. et al. Sensitization of silicon by singlet exciton fission in tetracene. Nature 571, 90–94 (2019).

    CAS  PubMed  Google Scholar 

  7. 7.

    Tai, Q. et al. Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nat. Commun. 7, 11105 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8.

    Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    CAS  PubMed  Google Scholar 

  9. 9.

    Xu, X. et al. Thermally stable, highly efficient, ultraflexible organic photovoltaics. Proc. Natl Acad. Sci. USA 115, 4589–4594 (2018).

    CAS  PubMed  Google Scholar 

  10. 10.

    Beatty, J. T. et al. An obligately photosynthetic bacterial anaerobe from a deep-sea hydrothermal vent. Proc. Natl Acad. Sci. USA 102, 9306–9310 (2005).

    CAS  PubMed  Google Scholar 

  11. 11.

    Tang, K.-H. et al. Temperature and ionic strength effects on the chlorosome light-harvesting antenna complex. Langmuir 27, 4816–4828 (2011).

    CAS  PubMed  Google Scholar 

  12. 12.

    Maiuri, M., Ostroumov, E. E., Saer, R. G., Blankenship, R. E. & Scholes, G. D. Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nat. Chem. 10, 177–183 (2018).

    CAS  PubMed  Google Scholar 

  13. 13.

    Rolczynski, B. S. et al. Correlated protein environments drive quantum coherence lifetimes in photosynthetic pigment–protein complexes. Chem 4, 20–21 (2018).

    Google Scholar 

  14. 14.

    Blau, S. M., Bennett, D. I. G., Kreisbeck, C., Scholes, G. D. & Aspuru-Guzik, A. Local protein solvation drives direct down-conversion in phycobiliprotein PC645 via incoherent vibronic transport. Proc. Natl Acad. Sci. USA 115, E3342–E3350 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Romero, E. et al. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676–682 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Collini, E. et al. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644–647 (2010).

    CAS  PubMed  Google Scholar 

  17. 17.

    Ishizaki, A., Calhoun, T. R., Schlau-Cohen, G. S. & Fleming, G. R. Quantum coherence and its interplay with protein environments in photosynthetic electronic energy transfer. Phys. Chem. Chem. Phys. 12, 7319–7337 (2010).

    CAS  PubMed  Google Scholar 

  18. 18.

    Scholes, G. D., Fleming, G. R., Olaya-Castro, A. & van Grondelle, R. Lessons from nature about solar light harvesting. Nat. Chem. 3, 763–774 (2011).

    CAS  PubMed  Google Scholar 

  19. 19.

    Jordan, P. et al. Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411, 909–917 (2001).

    CAS  PubMed  Google Scholar 

  20. 20.

    Peers, G. et al. An ancient light-harvesting protein is critical for the regulation of algal photosynthesis. Nature 462, 518–521 (2009).

    CAS  PubMed  Google Scholar 

  21. 21.

    Kasha, M., Rawls, H. R. & Ashraf El-Bayoumi, M. The exciton model in molecular spectroscopy. Pure Appl. Chem. 11, 371–392 (1965).

    CAS  Google Scholar 

  22. 22.

    Hestand, N. J. & Spano, F. C. Expanded theory of H- and J-molecular aggregates: the effects of vibronic coupling and intermolecular charge transfer. Chem. Rev. 118, 7069–7163 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    Jang, S. J. & Mennucci, B. Delocalized excitons in natural light-harvesting complexes. Rev. Mod. Phys. 90, 035003 (2018).

    CAS  Google Scholar 

  24. 24.

    Engel, G. S. et al. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782–786 (2007).

    CAS  PubMed  Google Scholar 

  25. 25.

    Chmeliov, J. et al. The nature of self-regulation in photosynthetic light-harvesting antenna. Nat. Plants 2, 16045 (2016).

    CAS  PubMed  Google Scholar 

  26. 26.

    Dostál, J., Pšenčík, J. & Zigmantas, D. In situ mapping of the energy flow through the entire photosynthetic apparatus. Nat. Chem. 8, 705–710 (2016).

    PubMed  Google Scholar 

  27. 27.

    Grewe, S. et al. Light-harvesting complex protein LHCBM9 is critical for photosystem II activity and hydrogen production in Chlamydomonas reinhardtii. Plant Cell 26, 1598–1611 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28.

    Park, H. et al. Enhanced energy transport in genetically engineered excitonic networks. Nat. Mater. 15, 211–217 (2015).

    PubMed  Google Scholar 

  29. 29.

    Brixner, T., Hildner, R., Köhler, J., Lambert, C. & Würthner, F. Exciton transport in molecular aggregates—from natural antennas to synthetic chromophore systems. Adv. Energy Mater. 7, 1700236 (2017).

    Google Scholar 

  30. 30.

    Akselrod, G. M. et al. Visualization of exciton transport in ordered and disordered molecular solids. Nat. Commun. 5, 3646 (2014).

    CAS  PubMed  Google Scholar 

  31. 31.

    Haedler, A. T. et al. Long-range energy transport in single supramolecular nanofibres at room temperature. Nature 523, 196–199 (2015).

    CAS  PubMed  Google Scholar 

  32. 32.

    Yamamoto, Y. et al. Photoconductive coaxial nanotubes of molecularly connected electron donor and acceptor layers. Science 314, 1761–1764 (2006).

    CAS  PubMed  Google Scholar 

  33. 33.

    Morseth, Z. A. et al. Interfacial dynamics within an organic chromophore-based water oxidation molecular assembly. ACS Appl. Mater. Interfaces 9, 16651–16659 (2017).

    CAS  PubMed  Google Scholar 

  34. 34.

    Zhang, Q. et al. Highly efficient resonant coupling of optical excitations in hybrid organic/inorganic semiconductor nanostructures. Nat. Nanotechnol. 2, 555–559 (2007).

    CAS  PubMed  Google Scholar 

  35. 35.

    Pace, N. A., Reid, O. G. & Rumbles, G. Delocalization drives free charge generation in conjugated polymer films. ACS Energy Lett. 3, 735–741 (2018).

    CAS  Google Scholar 

  36. 36.

    Eisele, D. M., Knoester, J., Kirstein, S., Rabe, J. P. & Vanden Bout, D. A. Uniform exciton fluorescence from individual molecular nanotubes immobilized on solid substrates. Nat. Nanotechnol. 4, 658–663 (2009).

    CAS  PubMed  Google Scholar 

  37. 37.

    Eisele, D. M. et al. Utilizing redox-chemistry to elucidate the nature of exciton transitions in supramolecular dye nanotubes. Nat. Chem. 4, 655–662 (2012).

    CAS  PubMed  Google Scholar 

  38. 38.

    Eisele, D. M. et al. Robust excitons inhabit soft supramolecular nanotubes. Proc. Natl Acad. Sci. USA 111, E3367–E3375 (2014).

    CAS  PubMed  Google Scholar 

  39. 39.

    Higgins, D. A. & Barbara, P. F. Excitonic transitions in J-aggregates probed by near-field scanning optical microscopy. J. Phys. Chem. 99, 3–7 (1995).

    CAS  Google Scholar 

  40. 40.

    Caram, J. R. et al. Room-temperature micron-scale exciton migration in a stabilized emissive molecular aggregate. Nano Lett. 16, 6808–6815 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Cleary, L., Chen, H., Chuang, C., Silbey, R. J. & Cao, J. Optimal fold symmetry of LH2 rings on a photosynthetic membrane. Proc. Natl Acad. Sci. USA 110, 8537–8542 (2013).

    CAS  PubMed  Google Scholar 

  42. 42.

    Jang, S. & Cheng, Y. C. Resonance energy flow dynamics of coherently delocalized excitons in biological and macromolecular systems: recent theoretical advances and open issues. Wiley Interdiscip. Rev. Comput. Mol. Sci. 3, 84–104 (2013).

    CAS  Google Scholar 

  43. 43.

    Qiao, Y. et al. Nanotubular J-aggregates and quantum dots coupled for efficient resonance excitation energy transfer. ACS Nano 9, 1552–1560 (2015).

    CAS  PubMed  Google Scholar 

  44. 44.

    Al-Khatib, O. et al. Adsorption of polyelectrolytes onto the oppositely charged surface of tubular J-aggregates of a cyanine dye. Colloid. Polym. Sci. 297, 729–739 (2019).

    CAS  Google Scholar 

  45. 45.

    Knoester, J. Modeling the optical properties of excitons in linear and tubular J-aggregates. Int. J. Photoenergy 2006, 1–10 (2006).

    Google Scholar 

  46. 46.

    Novoderezhkin, V., Monshouwer, R. & van Grondelle, R. Exciton (de)localization in the LH2 antenna of Rhodobacter sphaeroides as revealed by relative difference absorption measurements of the LH2 antenna and the B820 subunit. J. Phys. Chem. B 103, 10540–10548 (1999).

    CAS  Google Scholar 

  47. 47.

    Lyon, J. L. et al. Spectroelectrochemical investigation of double-walled tubular J-aggregates of amphiphilic cyanine dyes. J. Phys. Chem. C 112, 1260–1268 (2008).

    CAS  Google Scholar 

  48. 48.

    Qiao, Y., Polzer, F., Kirmse, H., Kirstein, S. & Rabe, J. P. Nanohybrids from nanotubular J-aggregates and transparent silica nanoshells. Chem. Commun. 51, 11980–11982 (2015).

    CAS  Google Scholar 

  49. 49.

    Bizimana, L. A., Brazard, J., Carbery, W. P., Gellen, T. & Turner, D. B. Resolving molecular vibronic structure using high-sensitivity two-dimensional electronic spectroscopy. J. Chem. Phys. 143, 164203 (2015).

    PubMed  Google Scholar 

  50. 50.

    Farfan, C. A., Epstein, J. & Turner, D. B. Femtosecond pulse compression using a neural-network algorithm. Opt. Lett. 43, 5166–5169 (2018).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This material is based on work partially supported by the National Science Foundation (NSF) Faculty Early Career Development Program (NSF-CAREER 1752475) and US Department of Energy, Office of Science, Office of Basic Energy Sciences. Equipment support was partially provided by the NSF Major Research Instrumentation Program (NSF-MRI 1531859). Financial support for the time-resolved spectroscopic studies was partially provided by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0018142). Support for the solar cell design and fabrication was partially provided by the NSF-CREST Center for Interface Design and Engineered Assembly of Low Dimensional Systems (IDEALS) (NSF grant HRD-1547830). D.M.E., N.V. and P.G. acknowledge partial support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences (DE-SC0018142). M.W. acknowledges support from the NSF-CREST IDEALS Fellowship. W.P.C. acknowledges partial support from the Margaret Strauss Kramer Fellowship. S.J.J. is supported by the NSF (CHE-1900170) and the US Department of Energy, Office of Sciences, Office of Basic Energy Sciences (DE-SC0001393). This work was performed in part at the Center for Discovery and Innovation (CDI) of The City College of New York and the Advanced Science Research Center (ASRC) Imaging Facility of The City University of New York. We thank the Martin and Michele Cohen Fund for Science, the PSC-CUNY Research Award Program, WITec GmbH, Tavid Ezell, David M. Milch and Tony Liss for generous support.

Author information

Affiliations

Authors

Contributions

D.M.E. directed the project. K.N. synthesized the samples, performed the ensemble, cryo-TEM and NSOM measurements and temperature-dependent studies, analysed the experimental data, initiated collaboration with M.W. and I.K. and prepared the samples for linear sweep voltammetry measurements. N.V. and P.G. prepared samples for the time-resolved spectroscopy experiments, N.V. performed the SEM measurements, and W.P.C. and K.N. performed the time-resolved spectroscopy measurements and analysed the experimental data. K.N. and M.W. designed and fabricated the DSSCs under the guidance of I.K. and K.N. analysed the experimental data under the guidance of D.M.E. S.J.J. contributed to the interpretation of spectroscopic data of heat-stressed samples. All authors provided fruitful discussions and beneficial interpretation of the data and analyses. K.N. and D.M.E. co-wrote the manuscript with input from all authors.

Corresponding author

Correspondence to Dorthe M. Eisele.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, data and discussion.

Supplementary Data

Source data for Supplementary Figs. 5, 6, 9 and 15.

Source data

Source Data Fig. 2

Excel file with source data for Fig. 2.

Source Data Fig. 3

Excel file with source data for Fig. 3.

Source Data Fig. 4

Excel file with source data for Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ng, K., Webster, M., Carbery, W.P. et al. Frenkel excitons in heat-stressed supramolecular nanocomposites enabled by tunable cage-like scaffolding. Nat. Chem. 12, 1157–1164 (2020). https://doi.org/10.1038/s41557-020-00563-4

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing