Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Catalytic enantiocontrol over a non-classical carbocation


Carbocations can be categorized into classical carbenium ions and non-classical carbonium ions. These intermediates are ubiquitous in reactions of both fundamental and practical relevance, finding application in the petroleum industry as well as the discovery of new drugs and materials. Conveying stereochemical information to carbocations is therefore of interest to a range of chemical fields. While previous studies targeted systems proceeding through classical ions, enantiocontrol over their non-classical counterparts has remained unprecedented. Here we show that strong and confined chiral acids catalyse enantioselective reactions via the non-classical 2-norbornyl cation. This reactive intermediate is generated from structurally different precursors by leveraging the reactivity of various functional groups to ultimately deliver the same enantioenriched product. Our work demonstrates that tailored catalysts can act as suitable hosts for simple, non-functionalized carbocations via a network of non-covalent interactions. We anticipate that the methods described herein will provide catalytic accessibility to valuable carbocation systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: The non-classical cation challenge.
Fig. 2: IDPi-catalysed enantioconvergent process from exo-norbornyl derivatives.
Fig. 3: IDPi-catalysed synthesis of enantioenriched product from various substrates.
Fig. 4: Mechanistic investigations.

Data availability

The experimental procedures and analytical data supporting the findings of this study are available within the manuscript and its Supplementary Information file. Raw and unprocessed NMR data are available from the corresponding author upon reasonable request. Crystallographic data for compounds 3 (CCDC 1948386) and 7 (crystal 1, CCDC 2021275; crystal 2, CCDC 1948044; crystal 3, CCDC 1948043; crystal 4, CCDC 2021276) can be downloaded free of charge from the Cambridge Crystallographic Data Centre (


  1. 1.

    Weininger, S. J. “What’s in a name?” From designation to denunciation—the nonclassical cation controversy. Bull. Hist. Chem. 25, 123–131 (2000).

    CAS  Google Scholar 

  2. 2.

    Brown, H. C. The Nonclassical Ion Problem 1st edn (Plenum Press, 1977).

  3. 3.

    Schleyer, P. v. R., Mainz, V. V. & Strom, E. T. in The Foundations of Physical Organic Chemistry: Fifty Years of the James Flack Norris Award Vol. 1209 ACS Symposium Series Ch. 7, 139–168 (American Chemical Society, 2015).

  4. 4.

    Scholz, F. et al. Crystal structure determination of the nonclassical 2-norbornyl cation. Science 341, 62–64 (2013).

    CAS  PubMed  Google Scholar 

  5. 5.

    Olah, G. A. 100 years of carbocations and their significance in chemistry. J. Org. Chem. 66, 5943–5957 (2001).

    CAS  PubMed  Google Scholar 

  6. 6.

    Olah, G. A. Stable carbocations. CXVIII. General concept and structure of carbocations based on differentiation of trivalent (classical) carbenium ions from three-center bound penta- of tetracoordinated (nonclassical) carbonium ions. Role of carbocations in electrophilic reactions. J. Am. Chem. Soc. 94, 808–820 (1972).

    CAS  Google Scholar 

  7. 7.

    Olah, G. A. My search for carbocations and their role in chemistry (Nobel lecture). Angew. Chem. Int. Ed. 34, 1393–1405 (1995).

    CAS  Google Scholar 

  8. 8.

    Naredla, R. R. & Klumpp, D. A. Contemporary carbocation chemistry: applications in organic synthesis. Chem. Rev. 113, 6905–6948 (2013).

    CAS  PubMed  Google Scholar 

  9. 9.

    Isomura, M., Petrone, D. A. & Carreira, E. M. Coordination-induced stereocontrol over carbocations: asymmetric reductive deoxygenation of racemic tertiary alcohols. J. Am. Chem. Soc. 141, 4738–4748 (2019).

    CAS  PubMed  Google Scholar 

  10. 10.

    Wendlandt, A. E., Vangal, P. & Jacobsen, E. N. Quaternary stereocentres via an enantioconvergent catalytic SN1 reaction. Nature 556, 447–451 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Zhao, C., Toste, F. D., Raymond, K. N. & Bergman, R. G. Nucleophilic substitution catalyzed by a supramolecular cavity proceeds with retention of absolute stereochemistry. J. Am. Chem. Soc. 136, 14409–14412 (2014).

    CAS  PubMed  Google Scholar 

  12. 12.

    Braun, M. & Kotter, W. Titanium(iv)-catalyzed dynamic kinetic asymmetric transformation of alcohols, silyl ethers, and acetals under carbon allylation. Angew. Chem. Int. Ed. 43, 514–517 (2004).

    CAS  Google Scholar 

  13. 13.

    Brak, K. & Jacobsen, E. N. Asymmetric ion-pairing catalysis. Angew. Chem. Int. Ed. 52, 534–561 (2013).

    CAS  Google Scholar 

  14. 14.

    Tsuji, N. et al. Activation of olefins via asymmetric Brønsted acid catalysis. Science 359, 1501–1505 (2018).

    CAS  PubMed  Google Scholar 

  15. 15.

    Brown, H. C., Prasad, J. V. N. V. & Zaidlewicz, M. Hydroboration. 83. Asymmetric hydroboration of representative cis disubstituted and heterocyclic olefins with dicaranylboranes of high enantiomeric purity. J. Org. Chem. 53, 2911–2916 (1988).

    CAS  Google Scholar 

  16. 16.

    Burgess, K. & Ohlmeyer, M. J. Enantioselective hydroboration mediated by homochiral rhodium catalysts. J. Org. Chem. 53, 5178–5179 (1988).

    CAS  Google Scholar 

  17. 17.

    Dorta, R., Egli, P., Zürcher, F. & Togni, A. The [IrCl(diphosphine)]2/fluoride system. Developing catalytic asymmetric olefin hydroamination. J. Am. Chem. Soc. 119, 10857–10858 (1997).

    CAS  Google Scholar 

  18. 18.

    Sevov, C. S., Zhou, J. & Hartwig, J. F. Iridium-catalyzed intermolecular hydroamination of unactivated aliphatic alkenes with amides and sulfonamides. J. Am. Chem. Soc. 134, 11960–11963 (2012).

    CAS  PubMed  Google Scholar 

  19. 19.

    Gountchev, T. I. & Tilley, T. D. Hydrosilylation catalysis by C2-symmetric bis(silylamido) complexes of yttrium. Organometallics 18, 5661–5667 (1999).

    CAS  Google Scholar 

  20. 20.

    Eichberger, G., Penn, G., Faber, K. & Griengl, H. Large scale preparation of (+)- and (–)- endo-norborneol by enzymatic hydrolysis. Tetrahedron Lett. 27, 2843–2844 (1986).

    CAS  Google Scholar 

  21. 21.

    Ma, L., Sweet, E. H. & Schultz, P. G. Selective antibody-catalyzed solvolysis of endo-2-norbornyl mesylate. J. Am. Chem. Soc. 121, 10227–10228 (1999).

    CAS  Google Scholar 

  22. 22.

    Mahlau, M. & List, B. Asymmetric counteranion-directed catalysis: concept, definition, and applications. Angew. Chem. Int. Ed. 52, 518–533 (2013).

    CAS  Google Scholar 

  23. 23.

    Hong, Y. J. & Tantillo, D. J. Perturbing the structure of the 2-norbornyl cation through C–H···N and C–H··· π interactions. J. Org. Chem. 72, 8877–8881 (2007).

    CAS  PubMed  Google Scholar 

  24. 24.

    Hong, Y. J. & Tantillo, D. J. C–H π interactions as modulators of carbocation structure—implications for terpene biosynthesis. Chem. Sci. 4, 2512–2518 (2013).

    CAS  Google Scholar 

  25. 25.

    Wagner, J. P. & Schreiner, P. R. London dispersion in molecular chemistry—reconsidering steric effects. Angew. Chem. Int. Ed. 54, 12274–12296 (2015).

    CAS  Google Scholar 

  26. 26.

    Winstein, S. & Trifan, D. S. The structure of the bicyclo[2,2,1]2-heptyl (norbornyl) carbonium ion. J. Am. Chem. Soc. 71, 2953–2953 (1949).

    CAS  Google Scholar 

  27. 27.

    Overman, L. E. Thermal and mercuric ion catalyzed [3,3]-sigmatropic rearrangement of allylic trichloroacetimidates. The 1,3 transposition of alcohol and amine functions. J. Am. Chem. Soc. 96, 597–599 (1974).

    CAS  Google Scholar 

  28. 28.

    Akiyama, T. & Mori, K. Stronger Brønsted acids: recent progress. Chem. Rev. 115, 9277–9306 (2015).

    CAS  PubMed  Google Scholar 

  29. 29.

    James, T., van Gemmeren, M. & List, B. Development and applications of disulfonimides in enantioselective organocatalysis. Chem. Rev. 115, 9388–9409 (2015).

    CAS  PubMed  Google Scholar 

  30. 30.

    Čorić, I. & List, B. Asymmetric spiroacetalization catalysed by confined Brønsted acids. Nature 483, 315–319 (2012).

    PubMed  Google Scholar 

  31. 31.

    Liu, L., Kaib, P. S. J., Tap, A. & List, B. A general catalytic asymmetric Prins cyclization. J. Am. Chem. Soc. 138, 10822–10825 (2016).

    CAS  PubMed  Google Scholar 

  32. 32.

    Fabbri, D., Delogu, G. & de Lucchi, O. Thiophosphonates of 1,1-binaphthol as chiral equivalents of H2S. Preparation of 2-mercaptonorbornanes and 2-mercaptonorbornenes. Tetrahedron Asymmetry 4, 1591–1596 (1993).

    CAS  Google Scholar 

  33. 33.

    Kaib, P. S. J., Schreyer, L., Lee, S., Properzi, R. & List, B. Extremely active organocatalysts enable a highly enantioselective addition of allyltrimethylsilane to aldehydes. Angew. Chem. Int. Ed. 55, 13200–13203 (2016).

    CAS  Google Scholar 

  34. 34.

    Schreyer, L., Properzi, R. & List, B. IDPi catalysis. Angew. Chem. Int. Ed. 58, 12761–12777 (2019).

    CAS  Google Scholar 

  35. 35.

    Winstein, S. & Trifan, D. Neighboring carbon and hydrogen. XI. Solvolysis of exo-norbornyl p-bromobenzenesulfonate. J. Am. Chem. Soc. 74, 1154–1160 (1952).

    CAS  Google Scholar 

  36. 36.

    Winstein, S. & Trifan, D. Neighboring carbon and hydrogen. X. Solvolysis of endo-norbornyl arylsulfonates. J. Am. Chem. Soc. 74, 1147–1154 (1952).

    CAS  Google Scholar 

  37. 37.

    Olah, G. A., White, A. M., DeMember, J. R., Commeyras, A. & Lui, C. Y. Stable carbonium ions. C. Structure of the norbornyl cation. J. Am. Chem. Soc. 92, 4627–4640 (1970).

    CAS  Google Scholar 

  38. 38.

    Amii, H. & Uneyama, K. C–F bond activation in organic synthesis. Chem. Rev. 109, 2119–2183 (2009).

    CAS  PubMed  Google Scholar 

  39. 39.

    Jaiswal, A. K., Prasad, P. K. & Young, R. D. Nucleophilic substitution of aliphatic fluorides via pseudohalide intermediates. Chem. Eur. J. 25, 6290–6294 (2019).

    CAS  PubMed  Google Scholar 

  40. 40.

    Lawton, R. G. 1,5 participation in the solvolysis of β-(Δ3-cyclopentenyl)-ethyl p-nitrobenzenesulfonate. J. Am. Chem. Soc. 83, 2399–2399 (1961).

    CAS  Google Scholar 

  41. 41.

    Saunders, M., Schleyer, P. v. R. & Olah, G. A. Stable carbonium ions. XI. The rate of hydride shifts in the 2-norbornyl cation. J. Am. Chem. Soc. 86, 5680–5681 (1964).

    CAS  Google Scholar 

  42. 42.

    Olah, G. A., Prakash, G. K. S. & Saunders, M. Conclusion of the classical-nonclassical ion controversy based on the structural study of the 2-norbornyl cation. Acc. Chem. Res. 16, 440–448 (1983).

    CAS  Google Scholar 

  43. 43.

    Tantillo, D. J. The carbocation continuum in terpene biosynthesis—where are the secondary cations? Chem. Soc. Rev. 39, 2847–2854 (2010).

    CAS  PubMed  Google Scholar 

Download references


Support from the Max Planck Society, the Deutsche Forschungsgemeinschaft (Leibniz Award to B.L. and Cluster of Excellence Ruhr Explores Solvation (RESOLV, EXC 1069)), the European Research Council (Advanced Grant ‘C–H Acids for Organic Synthesis, CHAOS’), the Alexander-von-Humboldt Foundation (fellowship to L.S.), and the Fonds der Chemischen Industrie (fellowship to G.P.) is acknowledged. We thank the technicians of our group and all members of the service departments of the Max-Planck-Institut für Kohlenforschung, with a special mention to R. Goddard, N. Nöthling, A. Deege and H. Hinrichs. We thank J. L. Kennemur and L. Schreyer for discussions during the preparation of the manuscript. We are grateful to B. Mitschke for graphical suggestions and all group members that participated in the crowd reviewing process. We acknowledge A. Blond, D. Petkova and M. R. Monaco for their contributions to initial studies.

Author information




B.L. and P.R.S. jointly developed the idea of this project; B.L. conceived, directed and oversaw the project; R.P. designed and conducted the experiments with the help of P.S.J.K.; R.P. and M.L. conducted the mechanistic investigations; M.L. performed the spectroscopic experiments and data analysis; G.P. initiated the experimental work and performed early reactivity studies; R.M. and C.K.D. first synthesized IDPi 3; L.S. carried out the computations; and R.P. and B.L. wrote the manuscript.

Corresponding author

Correspondence to Benjamin List.

Ethics declarations

Competing interests

B.L., P.S.J.K. and R.P. are inventors on patent WO2017037141 (A1) filed by the Max-Planck-Institut für Kohlenforschung covering the IDPi catalyst class and its applications in asymmetric synthesis.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, data, text, computational methods, Figs. 1–34 and Tables 1–16.

Supplementary Data 1

Crystallographic data for compound 7, crystal 1. CCDC reference 2021275.

Supplementary Data 2

Crystallographic data for compound 7, crystal 2. CCDC reference 1948044.

Supplementary Data 3

Crystallographic data for compound 7, crystal 3. CCDC reference 1948043.

Supplementary Data 4

Crystallographic data for compound 7, crystal 4. CCDC reference 2021276.

Supplementary Data 5

Crystallographic data for compound 3. CCDC reference 1948386.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Properzi, R., Kaib, P.S.J., Leutzsch, M. et al. Catalytic enantiocontrol over a non-classical carbocation. Nat. Chem. 12, 1174–1179 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing