Nickel-catalysed anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes facilitated by non-covalent interactions


Anti-Markovnikov additions to alkenes have been a longstanding goal of catalysis, and anti-Markovnikov addition of arenes to alkenes would produce alkylarenes that are distinct from those formed by acid-catalysed processes. Existing hydroarylations are either directed or occur with low reactivity and low regioselectivity for the n-alkylarene. Herein, we report the first undirected hydroarylation of unactivated alkenes with unactivated arenes that occurs with high regioselectivity for the anti-Markovnikov product. The reaction occurs with a nickel catalyst ligated by a highly sterically hindered N-heterocyclic carbene. Catalytically relevant arene- and alkene-bound nickel complexes have been characterized, and the rate-limiting step was shown to be reductive elimination to form the C–C bond. Density functional theory calculations, combined with second-generation absolutely localized molecular orbital energy decomposition analysis, suggest that the difference in activity between catalysts containing large and small carbenes results more from stabilizing intramolecular non-covalent interactions in the secondary coordination sphere than from steric hindrance.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Transition metal-catalysed hydroarylation of unactivated alkenes with unactivated arenes.
Fig. 2: Reaction development and characterization of [L4–Ni(η6-C6H6)].
Fig. 3: Observation and isolation of catalyst resting states.
Fig. 4: Mechanistic experiments.
Fig. 5: Computational investigations.

Data availability

Crystallographic data for the structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre, under deposition numbers 1901576 ([L4–Ni(η6-C6H6)]), 1901577 (26) and 1901578 (25). Copies of the data can be obtained free of charge via All other data supporting the findings of this study are available within the Article and its Supplementary Information, or from the corresponding author upon reasonable request.


  1. 1.

    Kocal, J. A., Vora, B. V. & Imai, T. Production of linear alkylbenzenes. Appl. Catal. A 221, 295–301 (2001).

    CAS  Google Scholar 

  2. 2.

    Linear Alkyl Benzene Market Size, Share & Trends Analysis Report By Application (Heavy Duty Laundry, Laundry Powders, Washing Liquids, Industrial Cleaners, Household Cleaners), And Segment Forecasts, 2012–2020 (Grand View Research, 2017).

  3. 3.

    Röper, M., Gehrer, E., Narbeshuber, T. & Siegel, W. Acylation and alkylation in Ullmann’s Encyclopedia of Industrial Chemistry (Wiley-VCH, 2000).

  4. 4.

    de Almeida, J. L. G., Dufaux, M., Taarit, Y. B. & Naccache, C. Linear alkylbenzene. J. Am. Oil Chem. Soc. 71, 675–694 (1994).

    Google Scholar 

  5. 5.

    Ishiwatari, R., Takada, H., Yun, S.-J. & Matsumoto, E. Alkylbenzene pollution of Tokyo Bay sediments. Nature 301, 599–600 (1983).

    CAS  Google Scholar 

  6. 6.

    Macı́as-Zamora, J. V. & Ramı́rez-Alvarez, N. Tracing sewage pollution using linear alkylbenzenes (LABs) in surface sediments at the south end of the Southern California Bight. Environ. Pollut. 130, 229–238 (2004).

    PubMed  Google Scholar 

  7. 7.

    Murai, S. et al. Efficient catalytic addition of aromatic carbon-hydrogen bonds to olefins. Nature 366, 529–531 (1993).

    CAS  Google Scholar 

  8. 8.

    Jun, C.-H., Hong, J.-B., Kim, Y.-H. & Chung, K.-Y. The catalytic alkylation of aromatic imines by Wilkinson’s complex: the domino reaction of hydroacylation and ortho-alkylation. Angew. Chem. Int. Ed. 39, 3440–3442 (2000).

    CAS  Google Scholar 

  9. 9.

    Gao, K. & Yoshikai, N. Cobalt–phenanthroline catalysts for the ortho alkylation of aromatic imines under mild reaction conditions. Angew. Chem. Int. Ed. 50, 6888–6892 (2011).

    CAS  Google Scholar 

  10. 10.

    Schinkel, M., Marek, I. & Ackermann, L. Carboxylate-assisted ruthenium(II)-catalyzed hydroarylations of unactivated alkenes through C–H cleavage. Angew. Chem. Int. Ed. 52, 3977–3980 (2013).

    CAS  Google Scholar 

  11. 11.

    Matsumoto, T., Taube, D. J., Periana, R. A., Taube, H. & Yoshida, H. Anti-Markovnikov olefin arylation catalyzed by an iridium complex. J. Am. Chem. Soc. 122, 7414–7415 (2000).

    CAS  Google Scholar 

  12. 12.

    Periana, R. A., Liu, X. Y. & Bhalla, G. Novel bis-acac-O,O–Ir(III) catalyst for anti-Markovnikov, hydroarylation of olefins operates by arene CH activation. Chem. Commun. 24, 3000–3001 (2002).

    Google Scholar 

  13. 13.

    Oxgaard, J., Muller, R. P., Goddard, W. A. & Periana, R. A. Mechanism of homogeneous Ir(III) catalyzed regioselective arylation of olefins. J. Am. Chem. Soc. 126, 352–363 (2004).

    CAS  PubMed  Google Scholar 

  14. 14.

    Bhalla, G., Liu, X. Y., Oxgaard, J., Goddard, W. A. & Periana, R. A. Synthesis, structure, and reactivity of O-donor Ir(III) complexes: C–H activation studies with benzene. J. Am. Chem. Soc. 127, 11372–11389 (2005).

    CAS  PubMed  Google Scholar 

  15. 15.

    Bhalla, G., Oxgaard, J., Goddard, W. A. & Periana, R. A. Anti-Markovnikov hydroarylation of unactivated olefins catalyzed by a bis-tropolonato iridium(III) organometallic complex. Organometallics 24, 3229–3232 (2005).

    CAS  Google Scholar 

  16. 16.

    Lail, M., Arrowood, B. N. & Gunnoe, T. B. Addition of arenes to ethylene and propene catalyzed by ruthenium. J. Am. Chem. Soc. 125, 7506–7507 (2003).

    CAS  PubMed  Google Scholar 

  17. 17.

    Lail, M. et al. Experimental and computational studies of ruthenium(II)-catalyzed addition of arene C−H bonds to olefins. Organometallics 23, 5007–5020 (2004).

    CAS  Google Scholar 

  18. 18.

    McKeown, B. A., Prince, B. M., Ramiro, Z., Gunnoe, T. B. & Cundari, T. R. PtII-catalyzed hydrophenylation of α-olefins: variation of linear/branched products as a function of ligand donor ability. ACS Catal. 4, 1607–1615 (2014).

    CAS  Google Scholar 

  19. 19.

    Luedtke, A. T. & Goldberg, K. I. Intermolecular hydroarylation of unactivated olefins catalyzed by homogeneous platinum complexes. Angew. Chem. Int. Ed. 47, 7694–7696 (2008).

    CAS  Google Scholar 

  20. 20.

    Clement, M. L., Grice, K. A., Luedtke, A. T., Kaminsky, W. & Goldberg, K. I. Platinum(II) olefin hydroarylation catalysts: tuning selectivity for the anti‐Markovnikov product. Chem. Eur. J. 20, 17287–17291 (2014).

    CAS  PubMed  Google Scholar 

  21. 21.

    Webster-Gardiner, M. S. et al. Catalytic synthesis of “super” linear alkenyl arenes using an easily prepared Rh(I) catalyst. J. Am. Chem. Soc. 139, 5474–5480 (2017).

    CAS  PubMed  Google Scholar 

  22. 22.

    Chen, J. et al. Catalytic synthesis of superlinear alkenyl arenes using a Rh(I) catalyst supported by a “capping arene” ligand: access to aerobic catalysis. J. Am. Chem. Soc. 140, 17007–17018 (2018).

    CAS  PubMed  Google Scholar 

  23. 23.

    Oxgaard, J. & Goddard, W. A. Mechanism of Ru(II)-catalyzed olefin insertion and C−H activation from quantum chemical studies. J. Am. Chem. Soc. 126, 442–443 (2004).

    CAS  PubMed  Google Scholar 

  24. 24.

    Oxgaard, J., Periana, R. A. & Goddard, W. A. Mechanistic analysis of hydroarylation catalysts. J. Am. Chem. Soc. 126, 11658–11665 (2004).

    CAS  PubMed  Google Scholar 

  25. 25.

    Suslick, B. A., Liberman-Martin, A. L., Wambach, T. C. & Tilley, T. D. Olefin hydroarylation catalyzed by (pyridyl-indolate)Pt(II) complexes: catalytic efficiencies and mechanistic aspects. ACS Catal. 7, 4313–4322 (2017).

    CAS  Google Scholar 

  26. 26.

    Mann, G., Shelby, Q., Roy, A. H. & Hartwig, J. F. Electronic and steric effects on the reductive elimination of diaryl ethers from palladium(II). Organometallics 22, 2775–2789 (2003).

    CAS  Google Scholar 

  27. 27.

    Foley, N. A. et al. Comparative reactivity of TpRu(L)(NCMe)Ph (L = CO or PMe3): impact of ancillary ligand L on activation of carbon−hydrogen bonds including catalytic hydroarylation and hydrovinylation/oligomerization of ethylene. J. Am. Chem. Soc. 129, 6765–6781 (2007).

    CAS  PubMed  Google Scholar 

  28. 28.

    Foley, N. A., Ke, Z., Gunnoe, T. B., Cundari, T. R. & Petersen, J. L. Aromatic C−H activation and catalytic hydrophenylation of ethylene by TpRu{P(OCH2)3CEt}(NCMe)Ph. Organometallics 27, 3007–3017 (2008).

    CAS  Google Scholar 

  29. 29.

    Foley, N. A., Lee, J. P., Ke, Z., Gunnoe, T. B. & Cundari, T. R. Ru(II) catalysts supported by hydridotris(pyrazolyl)borate for the hydroarylation of olefins: reaction scope, mechanistic studies, and guides for the development of improved catalysts. Acc. Chem. Res. 42, 585–597 (2009).

    CAS  PubMed  Google Scholar 

  30. 30.

    Joslin, E. E. et al. Catalytic hydroarylation of ethylene using TpRu(L)(NCMe)Ph (L = 2,6,7-trioxa-1-phosphabicyclo[2,2,1]heptane): comparison to TpRu(L′)(NCMe)Ph systems (L′ = CO, PMe3, P(pyr)3, or P(OCH2)3CEt). Organometallics 31, 6851–6860 (2012).

    CAS  Google Scholar 

  31. 31.

    Burgess, S. A. et al. Hydrophenylation of ethylene using a cationic Ru(ii) catalyst: comparison to a neutral Ru(ii) catalyst. Chem. Sci. 5, 4355–4366 (2014).

    CAS  Google Scholar 

  32. 32.

    Malinoski, J. M. & Brookhart, M. Polymerization and oligomerization of ethylene by cationic nickel(II) and palladium(II) complexes containing bidentate phenacyldiarylphosphine ligands. Organometallics 22, 5324–5335 (2003).

    CAS  Google Scholar 

  33. 33.

    Bair, J. S. et al. Linear-selective hydroarylation of unactivated terminal and internal olefins with trifluoromethyl-substituted arenes. J. Am. Chem. Soc. 136, 13098–13101 (2014).

    CAS  PubMed  Google Scholar 

  34. 34.

    Schramm, Y., Takeuchi, M., Semba, K., Nakao, Y. & Hartwig, J. F. Anti-Markovnikov hydroheteroarylation of unactivated alkenes with indoles, pyrroles, benzofurans, and furans catalyzed by a nickel–N-heterocyclic carbene cystem. J. Am. Chem. Soc. 137, 12215–12218 (2015).

    CAS  PubMed  Google Scholar 

  35. 35.

    Guihaumé, J., Halbert, S., Eisenstein, O. & Perutz, R. N. Hydrofluoroarylation of alkynes with Ni catalysts. C–H activation via ligand-to-ligand hydrogen transfer, an alternative to oxidative addition. Organometallics 31, 1300–1314 (2012).

    Google Scholar 

  36. 36.

    Hoshimoto, Y., Hayashi, Y., Suzuki, H., Ohashi, M. & Ogoshi, S. One-pot, single-step, and gram-scale synthesis of nononuclear [(η6-arene)Ni(N-heterocyclic carbene)] complexes: useful precursors of the Ni0–NHC unit. Organometallics 33, 1276–1282 (2014).

    CAS  Google Scholar 

  37. 37.

    Berthon-Gelloz, G. et al. IPr* an easily accessible highly hindered N-heterocyclic carbene. Dalton Trans. 39, 1444–1446 (2010).

    CAS  PubMed  Google Scholar 

  38. 38.

    Meiries, S., Speck, K., Cordes, D. B., Slawin, A. M. Z. & Nolan, S. P. [Pd(IPr*OMe)(acac)Cl]: tuning the N-heterocyclic carbene in catalytic C–N bond formation. Organometallics 32, 330–339 (2013).

    CAS  Google Scholar 

  39. 39.

    Okumura, S. et al. para-Selective alkylation of benzamides and aromatic ketones by cooperative nickel/aluminum catalysis. J. Am. Chem. Soc. 138, 14699–14704 (2016).

    CAS  Google Scholar 

  40. 40.

    Horn, P. R., Mao, Y. & Head-Gordon, M. Probing non-covalent interactions with a second generation energy decomposition analysis using absolutely localized molecular orbitals. Phys. Chem. Chem. Phys. 18, 23067–23079 (2016).

    CAS  PubMed  Google Scholar 

  41. 41.

    Saper, N. I. & Hartwig, J. F. Mechanistic investigations of the hydrogenolysis of diaryl ethers catalyzed by nickel complexes of N-heterocyclic carbene ligands. J. Am. Chem. Soc. 139, 17667–17676 (2017).

    CAS  PubMed  Google Scholar 

  42. 42.

    Clavier, H. & Nolan, S. P. Percent buried volume for phosphine and N-heterocyclic carbene ligands: steric properties in organometallic chemistry. Chem. Commun. 46, 841–861 (2010).

    CAS  Google Scholar 

  43. 43.

    Hillier, A. C. et al. A combined experimental and theoretical study examining the binding of N-heterocyclic carbenes (NHC) to the Cp*RuCl (Cp* = η5-C5Me5) moiety: insight into stereoelectronic differences between unsaturated and saturated NHC ligands. Organometallics 22, 4322–4326 (2003).

    CAS  Google Scholar 

  44. 44.

    Falivene, L. et al. SambVca 2. A web tool for analyzing catalytic pockets with topographic steric maps. Organometallics 35, 2286–2293 (2016).

    CAS  Google Scholar 

  45. 45.

    Dorta, R. et al. Steric and electronic properties of N-heterocyclic carbenes (NHC): a detailed study on their interaction with Ni(CO)4. J. Am. Chem. Soc. 127, 2485–2496 (2005).

    CAS  PubMed  Google Scholar 

  46. 46.

    Matsumoto, T., Periana, R. A., Taube, D. J. & Yoshida, H. Regioselective hydrophenylation of olefins catalyzed by an Ir(III) complex. J. Mol. Catal. A 180, 1–18 (2002).

    CAS  Google Scholar 

  47. 47.

    Simmons, E. M. & Hartwig, J. F. On the interpretation of deuterium kinetic isotope effects in C–H bond functionalizations by transition-metal complexes. Angew. Chem. Int. Ed. 51, 3066–3072 (2012).

    CAS  Google Scholar 

  48. 48.

    Tang, S., Eisenstein, O., Nakao, Y. & Sakaki, S. Aromatic C–H σ-bond activation by Ni0, Pd0, and Pt0 alkene complexes: concerted oxidative addition to metal vs ligand-to-ligand H transfer mechanism. Organometallics 36, 2761–2771 (2017).

    CAS  Google Scholar 

  49. 49.

    Bickelhaupt, F. M. & Houk, K. N. Analyzing reaction rates with the distortion/interaction-activation strain model. Angew. Chem. Int. Ed. 56, 10070–10086 (2017).

    CAS  Google Scholar 

  50. 50.

    Hartwig, J. F. in Organotransition Metal Chemistry: From Bonding to Catalysis Ch. 8 (Univ. Science Books, 2010).

  51. 51.

    Johnson, E. R. et al. Revealing noncovalent interactions. J. Am. Chem. Soc. 132, 6498–6506 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52.

    Contreras-García, J. et al. NCIPLOT: a program for plotting noncovalent interaction regions. J. Chem. Theory Comput. 7, 625–632 (2011).

    PubMed  PubMed Central  Google Scholar 

Download references


We thank S. Arlow, C. Karmel and J. Wang for helpful discussions. We thank Y. Schramm for preliminary experiments. We acknowledge N. Settineri for X-ray crystallographic analysis. We thank M. Head-Gordon and M. Loipersberger for discussions on EDA calculations. This work was supported by the Director, Office of Science, of the U.S. Department of Energy under contract no. DE-AC02- 05CH11231, by the National Science Foundation (graduate research fellowship to N.I.S.) and by the Japan Society for the Promotion of Science (JSPS KAKENHI Grant Number JP15H05799). X-ray diffraction data were collected using an instrument funded by the NIH (S10-RR027172). Computations were performed on a computation cluster funded by the NIH (S10-OD023532). NMR spectroscopy was performed in the College of Chemistry’s NMR facility funded in part by the NIH (S10-OD024998).

Author information




All authors conceived and designed the experiments. N.I.S., A.O. and K.S. performed the experiments. N.I.S. and D.W.S. performed the computations. All authors participated in discussion and N.I.S. J.F.H. and Y.N. co-wrote the manuscript.

Corresponding authors

Correspondence to Yoshiaki Nakao or John F. Hartwig.

Ethics declarations

Competing interests

The authors declare no competing interests

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Experimental details, procedures and characterization data for all compounds and mechanistic experiments reported in this manuscript. Details on computational analysis and xyz coordinates of all structures.

Crystallographic data

Crystallographic data for compound 25. CCDC reference 1901578.

Crystallographic data

Crystallographic data for compound 26. CCDC reference 1901577.

Crystallographic data

Crystallographic data for compound [L4–Ni(η6-C6H6)]. CCDC reference 1901576.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Saper, N.I., Ohgi, A., Small, D.W. et al. Nickel-catalysed anti-Markovnikov hydroarylation of unactivated alkenes with unactivated arenes facilitated by non-covalent interactions. Nat. Chem. 12, 276–283 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing