Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids

Abstract

Meroterpenoids are natural products of hybrid biosynthetic origins—derived from both terpenoid and polyketide pathways—with a wealth of biological activities. Given their therapeutic potential, a general strategy to access these natural products in a concise and divergent fashion is highly desirable. Here, we report a modular synthesis of a suite of oxidized meroterpenoids using a hybrid synthetic strategy that is designed to harness the power of both biocatalytic and radical-based retrosynthetic logic. This strategy enables direct introduction of key hydroxyl groups and rapid construction of key bonds and stereocentres, facilitating the development of a concise route (7–12 steps from commercial materials) to eight oxidized meroterpenoids from two common molecular scaffolds. This work lays the foundation for rapid access to a wide range of oxidized meroterpenoids through the use of similar hybrid strategy that combines two synthetic approaches.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Combining chemoenzymatic and radical-based retrosynthetic logic for collective synthetic access to oxidized meroterpenoids.
Fig. 2: Optimization of P450BM3 variants for practical and selective C3 hydroxylation of 12 and 13.
Fig. 3: Modular chemoenzymatic synthesis of α-pyrone meroterpenoids.
Fig. 4: Modular chemoenzymatic synthesis of diterpenic meroterpenoids.

Data availability

All the data supporting the findings of this study are available within the paper and its supplementary information files or from the corresponding author on request.

References

  1. 1.

    Corey, E. J. & Cheng, X.-M. The Logic of Chemical Synthesis (Wiley, 1995).

  2. 2.

    Turner, N. J. & O’Reilly, E. Biocatalytic retrosynthesis. Nat. Chem. Biol. 9, 285–288 (2013).

    CAS  PubMed  Google Scholar 

  3. 3.

    Turner, N. J. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5, 567–573 (2009).

    CAS  PubMed  Google Scholar 

  4. 4.

    Hung, K., Hu, X. & Maimone, T. Total synthesis of complex terpenoids employing radical cascade processes. Nat. Prod. Rep. 35, 174–202 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Smith, J. M., Harwood, S. J. & Baran, P. S. Radical retrosynthesis. Acc. Chem. Res. 51, 1807–1817 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Green, S. A. et al. The high chemofidelity of metal-catalyzed hydrogen atom transfer. Acc. Chem. Res. 51, 2628–2640 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Matsuda, Y. & Abe, I. Biosynthesis of fungal meroterpenoids. Nat. Prod. Rep. 33, 26–53 (2016).

    CAS  PubMed  Google Scholar 

  8. 8.

    Sunazuka, T. & Ōmura, S. Total synthesis of α-pyrone meroterpenoids, novel bioactive microbial metabolites. Chem. Rev. 105, 4559–4580 (2005).

    CAS  PubMed  Google Scholar 

  9. 9.

    Macías, F. A., Carrera, C. & Galindo, J. C. G. Brevianes revisited. Chem. Rev. 114, 2717–2732 (2014).

    PubMed  Google Scholar 

  10. 10.

    Itoh, T. et al. Reconstitution of a fungal meroterpenoid biosynthesis reveals the involvement of a novel family of terpene cyclases. Nat. Chem. 2, 858–864 (2010).

    CAS  PubMed  Google Scholar 

  11. 11.

    Corey, E. J., Noe, M. C. & Lin, S. A mechanistically designed bis-cinchona alkaloid ligand allows position- and enantioselective dihydroxylation of farnesol and other oligoprenyl derivatives at the terminal isopropylidene unit. Tetrahedron Lett. 36, 8741–8744 (1995).

    CAS  Google Scholar 

  12. 12.

    Smith, A. B. III, Kinso, T., Sunazuka, T. & Ōmura, S. Biomimetic total synthesis of the ACAT inhibitor (+)-pyripyropene E. Tetrahedron Lett. 37, 6461–6464 (1996).

    CAS  Google Scholar 

  13. 13.

    Kumanireng, A. S., Kato, T. & Kitahara, Y. Cyclization of polyenes X. Biogenetic type synthesis of dl-taodiol. Chem. Lett. 2, 1045–1047 (1973).

    Google Scholar 

  14. 14.

    Nagamitsu, T. et al. Total synthesis of (+)-pyripyropene A, a potent, orally bioavailable inhibitor of acyl-CoA:cholesterol acyltransferase. J. Org. Chem. 60, 8126–8127 (1995).

    CAS  Google Scholar 

  15. 15.

    Abad, A. et al. An efficient stereoselective synthesis of stypodiol and epistypodiol. J. Org. Chem. 63, 5100–5106 (1998).

    CAS  Google Scholar 

  16. 16.

    Takikawa, H., Imamura, Y. & Sasaki, M. Synthesis and absolute configuration of brevione B, an allelochemical isolated from Penicillium sp. Tetrahedron 62, 39–48 (2006).

    CAS  Google Scholar 

  17. 17.

    Dixon, D. D., Lockner, J. W., Zhou, Q. & Baran, P. S. Scalable, divergent synthesis of meroterpenoids via “borono-sclareolide”. J. Am. Chem. Soc. 134, 8432–8435 (2012).

    CAS  PubMed  Google Scholar 

  18. 18.

    Crossley, S. W. M., Obradors, C., Martinez, R. M. & Shenvi, R. A. Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem. Rev. 116, 8912–9000 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Basabe, P. et al. Synthesis of (+)-makassaric acid, a protein kinase MK2 inhibitor. Tetrahedron 66, 6008–6012 (2010).

    CAS  Google Scholar 

  20. 20.

    Chen, M. S. & White, M. C. Combined effects on selectivity in Fe-catalyzed methylene oxidation. Science 327, 566–571 (2010).

    CAS  PubMed  Google Scholar 

  21. 21.

    Quinn, R. K. et al. Site-selective aliphatic C–H chlorination using N-chloroamides enables a synthesis of chlorolissoclimide. J. Am. Chem. Soc. 138, 696–702 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Kawamata et al. Scalable, electrochemical oxidation of unactivated C–H bonds. J. Am. Chem. Soc. 139, 7448–7451 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. 23.

    Chiappini, N. D., Mack, J. B. C. & Du Bois, J. Intermolecular C(sp3)−H amination of complex molecules. Angew. Chem. Int. Ed. 57, 4956–4959 (2018).

    CAS  Google Scholar 

  24. 24.

    Frija, L. M. T., Frade, R. F. M. & Afonso, C. A. M. Isolation, chemical, and biotransformation routes of labdane-type diterpenes. Chem. Rev. 111, 4418–4452 (2011).

    CAS  PubMed  Google Scholar 

  25. 25.

    Zhang, K., El Damaty, S. & Fasan, R. P450 fingerprinting method for rapid discovery of terpene hydroxylating P450 catalysts with diversified regioselectivity. J. Am. Chem. Soc. 133, 3242–3245 (2011).

    CAS  PubMed  Google Scholar 

  26. 26.

    Hall, E. A., Sarkar, M. R., Lee, J. H. Z., Munday, S. D. & Bell, S. G. Improving the monooxygenase activity and the regio- and stereoselectivity of terpenoid hydroxylation using ester directing groups. ACS Catal. 6, 6306–6317 (2016).

    CAS  Google Scholar 

  27. 27.

    Aranda, G. et al. Microbial transformation of diterpenes: hydroxylation of sclareol, manool and derivatives by Mucor plumbeus. Tetrahedron 47, 8339–8350 (1991).

    CAS  Google Scholar 

  28. 28.

    McLachlan, M. J., Johannes, T. W. & Zhao, H. Further improvement of phosphite dehydrogenase thermostability by saturation mutagenesis. Biotechnol. Bioeng. 99, 268–274 (2008).

    CAS  PubMed  Google Scholar 

  29. 29.

    Lewis, J. C. et al. Combinatorial alanine substitution enables rapid optimization of cytochrome P450BM3 for selective hydroxylation of large substrates. ChemBioChem 11, 2502–2505 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Wong, T. S., Arnold, F. H. & Schwaneberg, U. Laboratory evolution of cytochrome P450 BM-3 monooxygenase for organic co-solvents. Biotechnol. Bioeng. 85, 351–358 (2004).

    CAS  PubMed  Google Scholar 

  31. 31.

    Hubert, C. et al. Brønsted acid-catalyzed synthesis of pyrans via a formal [3+3] cycloaddition. Adv. Synth. Catal. 350, 40–42 (2008).

    CAS  Google Scholar 

  32. 32.

    Hsung, R. P., Kurdyumov, A. V. & Sydorenko, N. A formal [3 + 3] cycloaddition approach to natural-product synthesis. Eur. J. Org. Chem. 1, 23–44 (2005).

    Google Scholar 

  33. 33.

    Iwasaki, K., Wan, K. K., Oppedisano, A., Crossley, S. W. M. & Shenvi, R. A. Simple, chemoselective hydrogenation with thermodynamic stereocontrol. J. Am. Chem. Soc. 136, 1300–1303 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34.

    King, S. M., Ma, X. & Herzon, S. B. A method for the selective hydrogenation of alkenyl halides to alkyl halides. J. Am. Chem. Soc. 136, 6884–6887 (2014).

    CAS  PubMed  Google Scholar 

  35. 35.

    Isayama, S. & Mukaiyama, T. A new method for preparation of alcohols from olefins with molecular oxygen and phenylsilane by the use of bis(acetylacetonato)cobalt(II). Chem. Lett. 18, 1071–1074 (1989).

    Google Scholar 

  36. 36.

    Lo, J. C. et al. Fe-catalyzed C–C bond construction from olefins via radicals. J. Am. Chem. Soc. 139, 2484–2503 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Hua, S.-K., Wang, J., Chen, X.-B., Xu, Z.-Y. & Zeng, B.-B. Scalable synthesis of methyl ent-isocopalate and its derivatives. Tetrahedron 67, 1142–1144 (2011).

    CAS  Google Scholar 

  38. 38.

    Sandfort, F., O’Neill, M. J., Cornella, J., Wimmer, L. & Baran, P. S. Alkyl−(hetero)aryl bond formation via decarboxylative cross-coupling: a systematic analysis. Angew. Chem. Int. Ed. 56, 3319–3323 (2017).

    CAS  Google Scholar 

  39. 39.

    Everson, D. A., Shrestha, R. & Weix, D. J. Nickel-catalyzed reductive cross-coupling of aryl halides with alkyl halides. J. Am. Chem. Soc. 132, 920–921 (2010).

    CAS  PubMed  Google Scholar 

  40. 40.

    Yokoe, H. et al. Enantiocontrolled total syntheses of breviones A, B, and C. J. Am. Chem. Soc. 133, 8854–8857 (2011).

    CAS  PubMed  Google Scholar 

  41. 41.

    Chiba, K., Fukuda, M., Kim, S., Kitano, Y. & Tada, M. Dihydrobenzofuran synthesis by an anodic [3 + 2] cycloaddition of phenols and unactivated alkenes. J. Org. Chem. 64, 7654–7656 (1999).

    CAS  Google Scholar 

  42. 42.

    Falck, J. R. et al. Total synthesis of the spiro-o-benzoquinonefuran (−)-stypoldione. J. Am. Chem. Soc. 115, 11606–11607 (1993).

    CAS  Google Scholar 

  43. 43.

    Gerwick, W. H. & Fenical, W. Ichthyotoxic and cytotoxic metabolites of the tropical brown alga Stypopodium zonale (Lamouroux) Papenfuss. J. Org. Chem. 46, 22–27 (1981).

    CAS  Google Scholar 

  44. 44.

    King-Smith, E., Zwick, C. R. III & Renata, H. Applications of oxygenases in the chemoenzymatic total synthesis of complex natural products. Biochemistry 57, 403–412 (2018).

    CAS  PubMed  Google Scholar 

  45. 45.

    Loskot, S. A., Romney, D. K., Arnold, F. H. & Stoltz, B. M. Enantioselective total synthesis of nigelladine A via late-stage C–H oxidation enabled by an engineered P450 enzyme. J. Am. Chem. Soc. 139, 10196–10199 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Lowell, A. N. et al. Chemoenzymatic total synthesis and structural diversification of tylactone-based macrolide antibiotics through late-stage polyketide assembly, tailoring, and C−H functionalization. J. Am. Chem. Soc. 139, 7913–7920 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Latham, J. et al. Integrated catalysis opens new arylation pathways via regiodivergent enzymatic C–H activation. Nat. Commun. 7, 11873 (2016).

    PubMed  PubMed Central  Google Scholar 

  48. 48.

    Durak, J. J., Payne, J. T. & Lewis, J. C. Late-stage diversification of biologically-active molecules via chemoenzymatic C–H functionalization. ACS Catal. 6, 1451–1454 (2016).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Kulcitki, V., Harghel, P. & Ungur, N. Unusual cyclic terpenoids with terminal pendant prenyl moieties: from occurrence to synthesis. Nat. Prod. Rep. 31, 1686–1720 (2014).

    CAS  PubMed  Google Scholar 

  50. 50.

    Domingo, V., Arteaga, J. F., Quilez del Moral, J. F. & Barrero, A. F. Unusually cyclized triterpenes: occurrence, biosynthesis and chemical synthesis. Nat. Prod. Rep. 26, 115–134 (2009).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Institutes of Health grant GM128895. We thank P. S. Baran and K. M. Engle for discussions and assistance with manuscript preparation. We acknowledge F. H. Arnold (California Institute of Technology) and H. Zhao for providing plasmids encoding the P450BM3 variant 1857 and phosphite dehydrogenase variant Opt13, respectively. We thank the Shen and Roush laboratories for generous access to their instrumentations.

Author information

Affiliations

Authors

Contributions

J.L., F.L., E.K.-S. and H.R. conceived of the work. E.K.-S., J.L. and H.R. designed and conducted the initial screening of P450BM3 variants. F.L. and E.K.-S. performed the experiments described in Fig. 3. J.L. performed the experiments described in Fig. 4. H.R. wrote the manuscript. J.L., F.L. and E.K.-S. assisted with writing and editing of the manuscript.

Corresponding author

Correspondence to Hans Renata.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Tables 1–9, references and spectral data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, J., Li, F., King-Smith, E. et al. Merging chemoenzymatic and radical-based retrosynthetic logic for rapid and modular synthesis of oxidized meroterpenoids. Nat. Chem. 12, 173–179 (2020). https://doi.org/10.1038/s41557-019-0407-6

Download citation

Further reading