Global aromaticity at the nanoscale


Aromaticity can be defined by the ability of a molecule to sustain a ring current when placed in a magnetic field. Hückel’s rule states that molecular rings with [4n + 2] π-electrons are aromatic, with an induced magnetization that opposes the external field inside the ring, whereas those with 4n π-electrons are antiaromatic, with the opposite magnetization. This rule reliably predicts the behaviour of small molecules, typically with fewer than 22 π-electrons (n = 5). It is not clear whether aromaticity has a size limit, or whether Hückel’s rule extends to much larger macrocycles. Here, we present evidence for global aromaticity in porphyrin nanorings with circuits of up to 162 π-electrons (n = 40); aromaticity is controlled by changing the constitution, oxidation state and conformation. Whenever a ring current is observed, its direction is correctly predicted by Hückel’s rule. The largest ring currents occur when the porphyrin units have fractional oxidation states.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 1H NMR spectra of the aromatic and antiaromatic six-porphyrin nanoring template complexes in oxidation states 2+, 4+ and 6+.
Fig. 2: Magnetic shielding plotted in the xz plane perpendicular to the plane of the nanoring.
Fig. 3: Hückel behaviour in a template-bound eight-porphyrin ring.
Fig. 4: Ring currents in topologically distinct 12-porphyrin ring complexes.
Fig. 5: Summary of the shielding and deshielding of the trihexylsilyl groups across eight different nanorings.

Data availability

All relevant data, including raw computational data from the NICS calculations as well as XYZ coordinates of calculated molecular geometries, are available within the paper and its Supplementary Information files. The NMR data are presented in detail in the main Supplementary Information file and are available upon reasonable request from the authors.


  1. 1.

    Heckmann, A. & Lambert, C. Organic mixed-valence compounds: a playground for electrons and holes. Angew. Chem. Int. Ed. 51, 326–392 (2012).

  2. 2.

    Tolbert, L. M. & Zhao, X. Beyond the cyanine limit: Peierls distortion and symmetry collapse in a polymethine dye. J. Am. Chem. Soc. 119, 3253–3258 (1997).

  3. 3.

    Gieseking, R. L., Ravva, M. K., Coropceanu, V. & Brédas, J.-L. Benchmarking density functional theory approaches for the description of symmetry breaking in long polymethine dyes. J. Phys. Chem. C 120, 9975–9984 (2016).

  4. 4.

    Lorke, A. et al. Spectroscopy of nanoscopic semiconductor rings. Phys. Rev. Lett. 84, 2223–2226 (2000).

  5. 5.

    Spitler, E. L., Johnson, C. A. II & Haley, M. M. Renaissance of annulene chemistry. Chem. Rev. 106, 5344–5386 (2006).

  6. 6.

    Soya, T., Kim, W., Kim, D. & Osuka, A. Stable [48]-, [50]-, and [52]dodecaphyrins( the largest Hückel aromatic molecules. Chem. Eur. J. 21, 8341–8346 (2015).

  7. 7.

    Yoneda, T., Soya, T., Neya, S. & Osuka, A. [62]Tetradecaphyrin and its mono- and bis-ZnII complexes. Chem. Eur. J. 22, 14518–14522 (2016).

  8. 8.

    Peeks, M. D., Claridge, T. D. W. & Anderson, H. L. Aromatic and antiaromatic ring currents in a molecular nanoring. Nature 541, 200–203 (2017).

  9. 9.

    Lu, X. et al. Fluorenyl based macrocyclic polyradicaloids. J. Am. Chem. Soc. 139, 13173–13183 (2017).

  10. 10.

    Cha, W.-Y. et al. Bicyclic Baird-type aromaticity. Nat. Chem. 9, 1243–1248 (2017).

  11. 11.

    Lu, X. et al. Global aromaticity in macrocyclic cyclopenta-fused tetraphenanthrenylene tetraradicaloid and its charged species. Angew. Chem. Int. Ed. 57, 13052–13056 (2018).

  12. 12.

    Gregolińska, H. et al. Fully conjugated [4]chrysaorene. Redox-coupled anion binding in a tetraradicaloid macrocycle. J. Am. Chem. Soc. 140, 14474–14480 (2018).

  13. 13.

    Ke, X.-S. et al. Three-dimensional fully conjugated carbaporphyrin cage. J. Am. Chem. Soc. 140, 16455–16459 (2018).

  14. 14.

    Soya, T., Mori, H. & Osuka, A. Quadruply twisted Hückel-aromatic dodecaphyrin. Angew. Chem. Int. Ed. 57, 15882–15886 (2018).

  15. 15.

    Li, G. et al. From open-shell singlet diradicaloid to closed-shell global antiaromatic macrocycles. Angew. Chem. Int. Ed. 57, 7166–7170 (2018).

  16. 16.

    Liu, C. et al. Macrocyclic polyradicaloids with unusual super-ring structure and global aromaticity. Chem 4, 1586–1595 (2018).

  17. 17.

    Peeks, M. D., Jirasek, M., Claridge, T. D. W. & Anderson, H. L. Global aromaticity and antiaromaticity in porphyrin nanoring anions. Angew. Chem. Int. Ed. 58, 15717–15720 (2019).

  18. 18.

    Peeks, M. D. et al. Aromaticity and antiaromaticity in the excited states of porphyrin nanorings. J. Phys. Chem. Lett. 10, 2017–2022 (2019).

  19. 19.

    Fokin, A. A., Jiao, H. & v. R. Schleyer, P. From dodecahedrapentaene to the “[n]trannulenes”. A new in-plane aromatic family. J. Am. Chem. Soc. 120, 9364–9365 (1998).

  20. 20.

    Burley, G. A. Trannulenes with “in-plane” aromaticity: candidates for harvesting light energy. Angew. Chem. Int. Ed. 44, 3176–3178 (2005).

  21. 21.

    Rickhaus, M. et al. Single-acetylene linked porphyrin nanorings. J. Am. Chem. Soc. 139, 16502–16505 (2017).

  22. 22.

    Haver, R. et al. Tuning the circumference of six-porphyrin nanorings. J. Am. Chem. Soc. 141, 7965–7971 (2019).

  23. 23.

    Gershoni-Poranne, R. & Stanger, A. Magnetic criteria of aromaticity. Chem. Soc. Rev. 44, 6597–6615 (2015).

  24. 24.

    Chen, Z., Wannere, C. S., Corminboeuf, C., Puchta, R. & v. R. Schleyer, P. Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. Chem. Rev. 105, 3842–3888 (2005).

  25. 25.

    Stephens, P. J., Devlin, F. J., Chabalowski, C. F. & Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem. 98, 11623–11627 (1994).

  26. 26.

    Henderson, T. M., Izmaylov, A. F., Scalmani, G. & Scuseria, G. E. Can short-range hybrids describe long-range-dependent properties? J. Chem. Phys. 131, 044108 (2009).

  27. 27.

    O’Sullivan, M. C. et al. Vernier templating and synthesis of a 12-porphyrin nano-ring. Nature 469, 72–75 (2011).

  28. 28.

    Herges, R. Topology in chemistry: designing Möbius molecules. Chem. Rev. 106, 4820–4842 (2006).

  29. 29.

    Stepien, M., Sprutta, N. & Latos-Grazynski, L. Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. Angew. Chem. Int. Ed. 50, 4288–4340 (2011).

  30. 30.

    Wirz, L. N., Dimitrova, M., Fliegel, H. & Sundholm, D. Magnetically induced ring-current strengths in Möbius twisted annulenes. J. Phys. Chem. Lett. 9, 1627–1632 (2018).

  31. 31.

    Senthilkumar, K. et al. Lemniscular [16]cycloparaphenylene: a radially conjugated figure-eight aromatic molecule. J. Am. Chem. Soc. 141, 7421–7427 (2019).

  32. 32.

    Fuller, F. B. The writhing number of a space curve. Proc. Natl Acad. Sci. USA 68, 815–819 (1971).

  33. 33.

    Rappaport, S. M. & Rzepa, H. S. Intrinsically chiral aromaticity. Rules incorporating linking number, twist, and writhe for higher-twist Möbius annulenes. J. Am. Chem. Soc. 130, 7613–7619 (2008).

  34. 34.

    Schaller, G. R. & Herges, R. Möbius molecules with twists and writhes. Chem. Commun. 49, 1254–1260 (2013).

  35. 35.

    Kondratuk, D. V. et al. Vernier-templated synthesis, crystal structure, and supramolecular chemistry of a 12-porphyrin nanoring. Chem. Eur. J. 20, 12826–12834 (2014).

  36. 36.

    Edwards, P. P., Lodge, M. T. J., Hensel, F. & Redmer, R. A metal conducts and a non-metal doesn’t. Phil. Trans. R. Soc. A 368, 941–965 (2010).

  37. 37.

    Hückel, E. Quantentheoretische Beiträge zum Benzolproblem I. Die Elektronenkonfiguration des Benzols und verwandter Verbindungen. Z. Phys. 70, 204–286 (1931).

Download references


We thank the EPSRC (grants EP/N017188/1, EP/R029229/1 and EP/M016110/1), the ERC (grant 320969), the European Union’s Horizon 2020 research and innovation programme (Marie Sklodowska-Curie grant SYNCHRONICS 643238) and the Swiss National Science Foundation (P300P2_174294) for funding, the National Mass Spectrometry Facility at Swansea University for MALDI mass spectra, the University of Oxford Advanced Research Computing Service ( and the Australian-government-supported National Computational Infrastructure (NCI) for the provision of high-performance computing. M.J. thanks Oxford University for a Scatcherd European Scholarship. H.G. thanks the Carlsberg Foundation for a Carlsberg Foundation Internationalisation Fellowship.

Author information

M.R., M.J., L.T., H.G., M.D.P., R.H. and H.-W.J. synthesized the compounds; M.R. and M.J. collected and analysed the NMR spectroscopic data; M.J. and M.D.P. performed the DFT calculations; T.D.W.C. assisted with NMR data collection and interpretation; H.L.A., M.R. and M.J. devised the project and wrote the paper; all authors discussed the results and edited the manuscript.

Correspondence to Harry L. Anderson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Details of experimental procedures, computational methods, synthetic schemes, NMR spectra, electrochemical data and results of DFT calculations testing a range of functionals.

XYZ coordinates

34 XYZ data files. A full set of calculated Cartesian coordinates for each nanoring in a range of oxidation states.

NICS values

42 data files in comma-separated-values (csv) format. The NICSs are organized into five columns, indicating x, y, z coordinates and the corresponding isotropic and zz NICS values (presented as the corresponding chemical shielding values from DFT NMR calculations multiplied by −1). The x, y, z coordinates use the same origin and orientation as the geometries provided in *.xyz files. The NICSs were calculated on structures that were optimized in the presence of templates, but from which the templates were removed before the NICS calculations. The DFT method used for the NICS calculations was LC-ωhPBE (ω = 0.1)/6-31G*. The names of the files indicate the species. For example, NICS for the 8-porphyrin nanoring with all-butadiyne linkers in the 4+ oxidation state, that is, c-P8[b8]4+, are stored in the file named ‘c-P8[B8]_4.csv’.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rickhaus, M., Jirasek, M., Tejerina, L. et al. Global aromaticity at the nanoscale. Nat. Chem. (2020).

Download citation