Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Covalent on-surface polymerization

Abstract

With the rapid development of scanning probe microscopy, it has become possible to study polymerization processes on suitable surfaces at the atomic level and in real space. In the two-dimensional confinement of a surface, polymerization reactions can give rise to the formation of unprecedented polymers with unique structures and properties, not accessible in solution. After a little over one decade since the discovery of covalent on-surface polymerization, we give an overview of the field, analyse the crucial aspects and critically reflect on the status quo. Specifically, we provide some general considerations about fundamental mechanisms as well as kinetics and thermodynamics of on-surface polymerization processes. The important role of the surface is detailed in view of its ability to control polymer formation with regard to structure, dimensionality and composition. Furthermore, examples that allow for locally induced polymerization are highlighted. Finally, we provide an analysis of scientific challenges in the field and outline future prospects.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Key aspects of on-surface polymerization.
Fig. 2: General mechanistic as well as thermodynamic and kinetic aspects of on-surface polymerization.
Fig. 3: Role of molecule-surface interactions.
Fig. 4: Molecular orientation and diffusion on the surface.
Fig. 5: From 1D to 2D structures.
Fig. 6: Random, alternating and block copolymer structures.
Fig. 7: Controlling local covalent bond formation and chain-growth polymerization.

Similar content being viewed by others

References

  1. Ziegler, K. Folgen und Werdegang einer Erfindung (Nobel lecture). Angew. Chem. 76, 545–553 (1964).

    Article  CAS  Google Scholar 

  2. Binnig, G., Rohrer, H., Gerber, C. & Weibel, E. Tunneling through a controllable vacuum gap. Appl. Phys. Lett. 40, 178–180 (1982).

    Article  CAS  Google Scholar 

  3. Ertl, G. Reactions at surfaces: from atoms to complexity (Nobel lecture). Angew. Chem. Int. Ed. 47, 3524–3535 (2008).

    Article  CAS  Google Scholar 

  4. Theobald, J. A., Oxtoby, N. S., Phillips, M. A., Champness, N. R. & Beton, P. H. Controlling molecular deposition and layer structure with supramolecular surface assemblies. Nature 424, 1029–1031 (2003).

    Article  CAS  PubMed  Google Scholar 

  5. Lin, N., Stepanow, S., Ruben, M. & Barth, J. V. Surface-confined supramolecular coordination chemistry. Top. Curr. Chem. 287, 1–44 (2009).

    CAS  PubMed  Google Scholar 

  6. Drexler, K. E. Molecular Machinery and Manufacturing with Applications to Computation. PhD thesis, Massachusetts Institute of Technology (1991).

  7. Hla, S.-W., Bartels, L., Meyer, G. & Rieder, K.-H. Inducing all steps of a chemical reaction with the scanning tunneling microscope tip: towards single molecule engineering. Phys. Rev. Lett. 85, 2777–2780 (2000).

    Article  CAS  PubMed  Google Scholar 

  8. Grill, L. et al. Nano-architectures by covalent assembly of molecular building blocks. Nat. Nanotechnol. 2, 687–691 (2007).

    Article  CAS  PubMed  Google Scholar 

  9. Nacci, C., Hecht, S. & Grill, L. in On-surface Synthesis (ed. Gourdon, A.) 1–21 (Springer, 2016).

  10. Gourdon, A. On-surface covalent coupling in ultrahigh vacuum. Angew. Chem. Int. Ed. 47, 6950–6953 (2008).

    Article  CAS  Google Scholar 

  11. Cai, J. et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466, 470–473 (2010).

    Article  CAS  PubMed  Google Scholar 

  12. Ruffieux, P. et al. On-surface synthesis of graphene nanoribbons with zigzag edge topology. Nature 531, 489–492 (2016).

    Article  CAS  PubMed  Google Scholar 

  13. Boz, S., Stöhr, M., Soydaner, U. & Mayor, M. Protecting-group-controlled surface chemistry — organization and heat-induced coupling of 4,4-di(tert-butoxycarbonylamino)biphenyl on metal surfaces. Angew. Chem. Int. Ed. 48, 3179–3183 (2009).

    Article  CAS  Google Scholar 

  14. Sakamoto, J., van Heijst, J., Lukin, O. & Schlüter, A. D. Two-dimensional polymers: just a dream of synthetic chemists? Angew. Chem. Int. Ed. 48, 1030–1069 (2009).

    Article  CAS  Google Scholar 

  15. Kissel, P. et al. A two-dimensional polymer prepared by organic synthesis. Nat. Chem. 4, 287–291 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Xi, M. & Bent, B. E. Iodobenzene on Cu(111): formation and coupling of adsorbed phenyl groups. Surf. Sci. 278, 19–32 (1992).

    Article  CAS  Google Scholar 

  17. Giessibl, F. J. Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003).

    Article  CAS  Google Scholar 

  18. Gross, L., Mohn, F., Moll, N., Liljeroth, P. & Meyer, G. The chemical structure of a molecule resolved by atomic force microscopy. Science 325, 1110–1114 (2009).

    Article  CAS  PubMed  Google Scholar 

  19. Gross, L. et al. Bond-order discrimination by atomic force microscopy. Science 337, 1326–1329 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. Pavlicek, N. et al. On-surface generation and imaging of arynes by atomic force microscopy. Nat. Chem. 7, 623–628 (2015).

    Article  CAS  PubMed  Google Scholar 

  21. Mairena, A. et al. The fate of bromine after temperature-induced dehydrogenation of on-surface synthesized bisheptahelicene. Chem. Sci. 10, 2998–3004 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dienstmaier, J. F. et al. Synthesis of well-ordered COF monolayers: surface growth of nanocrystalline precursors versus direct on-surface polycondensation. ACS Nano 5, 9737–9745 (2011).

    Article  CAS  PubMed  Google Scholar 

  23. Sakaguchi, H., Matsumura, H. & Gong, H. Electrochemical epitaxial polymerization of single-molecular wires. Nat. Mater. 3, 551–557 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    Article  CAS  PubMed  Google Scholar 

  25. Carothers, W. H. Polymerization. Chem. Rev. 8, 353–426 (1931).

    Article  CAS  Google Scholar 

  26. Szwarc, M. ‘Living’ polymers. Nature 178, 1168–1169 (1956).

    Article  CAS  Google Scholar 

  27. Lutz, J.-F., Lehn, J.-M., Meijer, E. W. & Matyjaszewski, K. From precision polymers to complex materials and systems. Nat. Rev. Mater. 1, 16024 (2016).

    Article  CAS  Google Scholar 

  28. Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  PubMed  CAS  Google Scholar 

  29. Merrifield, R. B. Solid phase synthesis (Nobel lecture). Angew. Chem. Int. Ed. 24, 799–892 (1985).

    Article  Google Scholar 

  30. Matena, M., Riehm, T., Stöhr, M., Jung, T. A. & Gade, L. H. Transforming surface coordination polymers into covalent surface polymers: linked polycondensed aromatics through oligomerization of N-heterocyclic carbene intermediates. Angew. Chem. Int. Ed. 47, 2414–2417 (2008).

    Article  CAS  Google Scholar 

  31. Sun, Q. et al. On-surface formation of one-dimensional polyphenylene through Bergman cyclization. J. Am. Chem. Soc. 135, 8448–8451 (2013).

    Article  CAS  PubMed  Google Scholar 

  32. Riss, A. et al. Local electronic and chemical structure of oligo-acetylene derivatives formed through radical cyclizations at a surface. Nano Lett. 14, 2251–2255 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sakaguchi, H., Song, S., Kojima, T. & Nakae, T. Homochiral polymerization-driven selective growth of graphene nanoribbons. Nat. Chem. 9, 57–63 (2017).

    Article  CAS  PubMed  Google Scholar 

  34. Okawa, Y. & Aono, M. Nanoscale control of chain polymerization. Nature 409, 683–684 (2001).

    Article  CAS  PubMed  Google Scholar 

  35. Okawa, Y. & Aono, M. Linear chain polymerization initiated by a scanning tunneling microscope tip at designated positions. J. Chem. Phys. 115, 2317–2322 (2001).

    Article  CAS  Google Scholar 

  36. Okawa, Y. et al. Chemical wiring and soldering toward all-molecule electronic circuitry. J. Am. Chem. Soc. 133, 8227–8233 (2011).

    Article  CAS  PubMed  Google Scholar 

  37. Para, F. et al. Micrometre-long covalent organic fibres by photoinitiated chain-growth radical polymerization on an alkali-halide surface. Nat. Chem. 10, 1112–1117 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Hodge, P. Entropically driven ring-opening polymerization of strainless organic macrocycles. Chem. Rev. 114, 2278–2312 (2014).

    Article  CAS  PubMed  Google Scholar 

  39. Sassi, M., Oison, V., Debierre, J.-M. & Humbel, S. Modelling the two-dimensional polymerization of 1,4-benzene diboronic acid on a Ag surface. ChemPhysChem 10, 2480–2485 (2009).

    Article  CAS  PubMed  Google Scholar 

  40. DeGreef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article  CAS  Google Scholar 

  41. Björk, J. & Hanke, F. Towards design rules for covalent nanostructures on metal surfaces. Chem. Eur. J. 20, 928–934 (2014).

    Article  PubMed  CAS  Google Scholar 

  42. Bieri, M. et al. Two-dimensional polymer formation on surfaces: insight into the roles of precursor mobility and reactivity. J. Am. Chem. Soc. 132, 16669–16676 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. DiGiovannantonio, M. et al. Mechanistic picture and kinetic analysis of surface-confined Ullmann polymerization. J. Am. Chem. Soc. 138, 16696–16702 (2016).

    Article  CAS  Google Scholar 

  44. Ferrighi, L. et al. Control of the intermolecular coupling of dibromotetracene on Cu(110) by the sequential activation of C–Br and C–H bonds. Chem. Eur. J. 21, 5826–5835 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Cai, L. et al. Direct formation of C–C double-bonded structural motifs by on-surface dehalogenative homocoupling of gem-dibromomethyl molecules. ACS Nano 12, 7959–7966 (2018).

    Article  CAS  PubMed  Google Scholar 

  46. Sun, Q. et al. Direct formation of C–C triple-bonded structural motifs by on-surface dehalogenative homocouplings of tribromomethyl-substituted arenes. Angew. Chem. Int. Ed. 57, 4035–4038 (2018).

    Article  CAS  Google Scholar 

  47. Ertl, G. Elementary steps in heterogeneous catalysis. Angew. Chem. Int. Ed. 29, 1219–1227 (1990).

    Article  Google Scholar 

  48. Weigelt, S. et al. Covalent interlinking of an aldehyde and an amine on an Au(111) surface in ultrahigh vacuum. Angew. Chem. Int. Ed. 46, 9227–9230 (2007).

    Article  CAS  Google Scholar 

  49. Lafferentz, L. et al. Controlling on-surface polymerization by hierarchical and substrate-directed growth. Nat. Chem. 4, 215–220 (2012).

    Article  CAS  PubMed  Google Scholar 

  50. Veld, M. I., Iavicoli, P., Haq, S., Amabilino, D. B. & Raval, R. Unique intermolecular reaction of simple porphyrins at a metal surface gives covalent nanostructures. Chem. Commun. 1536–1538 (2008).

  51. Lipton-Duffin, J. A., Ivasenko, O., Perepichka, D. F. & Rosei, F. Synthesis of polyphenylene molecular wires by surface-confined polymerization. Small 5, 592–597 (2009).

    Article  CAS  PubMed  Google Scholar 

  52. Zwaneveld, N. A. A. et al. Organized formation of 2D extended covalent organic frameworks at surfaces. J. Am. Chem. Soc. 130, 6678–6679 (2008).

    Article  CAS  PubMed  Google Scholar 

  53. Ourdjini, O. et al. Substrate-mediated ordering and defect analysis of a surface covalent organic framework. Phys. Rev. B 84, 125421 (2011).

    Article  CAS  Google Scholar 

  54. Gutzler, R. et al. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4-bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 4456–4458 (2009).

  55. Koch, M., Gille, M., Viertel, A., Hecht, S. & Grill, L. Substrate-controlled linking of molecular building blocks: Au(111) vs. Cu(111). Surf. Sci. 627, 70–74 (2014).

    Article  CAS  Google Scholar 

  56. Pham, T. A. et al. Comparing Ullmann coupling on noble metal surfaces: on-surface polymerization of 1,3,6,8-tetrabromopyrene on Cu(111) and Au(111). Chem. Eur. J. 22, 5937–5944 (2016).

    Article  CAS  PubMed  Google Scholar 

  57. Simonov, K. A. et al. From graphene nanoribbons on Cu(111) to nanographene on Cu(110): critical role of substrate structure in the bottom-up fabrication strategy. ACS Nano 9, 8997–9011 (2015).

    Article  CAS  PubMed  Google Scholar 

  58. Pinardi, A. L. et al. Tailored formation of N-doped nanoarchitectures by diffusion-controlled on-surface (cyclo)-dehydrogenation of heteroaromatics. ACS Nano 7, 3676–3684 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Koch, M., Gille, M., Hecht, S. & Grill, L. Steering a cycloaddition reaction via the surface structure. Surf. Sci. 678, 194–200 (2018).

    Article  CAS  Google Scholar 

  60. Saywell, A., Schwarz, J., Hecht, S. & Grill, L. Polymerization on stepped surfaces: alignment of polymers and identification of catalytic sites. Angew. Chem. Int. Ed. 51, 5096–5100 (2012).

    Article  CAS  Google Scholar 

  61. Han, P. et al. Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity. ACS Nano 8, 9181–9187 (2014).

    Article  CAS  PubMed  Google Scholar 

  62. Simonov, K. A. et al. Comment on ‘Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity’. ACS Nano 9, 3399–3403 (2015).

    Article  CAS  PubMed  Google Scholar 

  63. Han, P. et al. Reply to “Comment on ‘Bottom-up graphene-nanoribbon fabrication reveals chiral edges and enantioselectivity’”. ACS Nano 9, 3404–3405 (2015).

    Article  CAS  PubMed  Google Scholar 

  64. Huang, H. et al. Spatially resolved electronic structure of precise armchair graphene nanoribbons. Sci. Rep. 2, 983 (2012).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Sanchez-Sanchez, C. et al. Purely armchair or partially chiral: noncontact atomic force microscopy characterization of dibromo-bianthryl-based graphene nanoribbons grown on Cu(111). ACS Nano 10, 8006–8011 (2016).

    Article  CAS  PubMed  Google Scholar 

  66. Schulz, F. et al. Precursor geometry determines the growth mechanism in graphene nanoribbons. J. Phys. Chem. C 121, 2896–2904 (2017).

    Article  CAS  Google Scholar 

  67. Villagomez, C. J., Sasaki, T., Tour, J. M. & Grill, L. Bottom-up assembly of molecular wagons on a surface. J. Am. Chem. Soc. 132, 16848 (2010).

    Article  CAS  PubMed  Google Scholar 

  68. Bieri, M. et al. Surface-supported 2D heterotriangulene polymers. Chem. Commun. 47, 10239–10241 (2011).

    Article  CAS  Google Scholar 

  69. Bulou, H. & Massobrio, C. Mechanisms of exchange diffusion on fcc(111) transition metal surfaces. Phys. Rev. B 72, 205427 (2005).

    Article  CAS  Google Scholar 

  70. Wang, W., Shi, X., Wang, S., VanHove, M. A. & Lin, N. Single-molecule resolution of an organometallic intermediate in a surface-supported Ullmann coupling reaction. J. Am. Chem. Soc. 133, 13264–13267 (2011).

    Article  CAS  PubMed  Google Scholar 

  71. Zint, S. et al. Imaging successive intermediate states of the on-surface Ullmann reaction on Cu(111): role of the metal coordination. ACS Nano 11, 4183–4190 (2017).

    Article  CAS  PubMed  Google Scholar 

  72. Eder, G. et al. Solution preparation of two-dimensional covalently linked networks by polymerization of 1,3,5-tri(4-iodophenyl)benzene on Au(111). ACS Nano 7, 3014–3021 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Adisoejoso, J. et al. A single-molecule-level mechanistic study of Pd-catalyzed and Cu-catalyzed homocoupling of aryl bromide on an Au(111) surface. Chem. Eur. J. 20, 4111–4116 (2014).

    Article  CAS  PubMed  Google Scholar 

  74. Kittelmann, M. et al. On-surface covalent linking of organic building blocks on a bulk insulator. ACS Nano 5, 8420–8425 (2011).

    Article  CAS  PubMed  Google Scholar 

  75. Kittelmann, M., Nimmrich, M., Lindner, R., Gourdon, A. & Kühnle, A. Sequential and site-specific on-surface synthesis on a bulk insulator. ACS Nano 7, 5614–5620 (2013).

    Article  CAS  PubMed  Google Scholar 

  76. Repp, J., Meyer, G., Stojkovic, S. M., Gourdon, A. & Joachim, J. Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. Phys. Rev. Lett. 94, 026803 (2005).

    Article  PubMed  CAS  Google Scholar 

  77. Wang, S. et al. Giant edge state splitting at atomically precise graphene zigzag edges. Nat. Commun. 7, 11507 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Jacobse, P. H., Mangnus, M. J. J., Zevenhuizen, S. J. M. & Swart, I. Mapping the conductance of electronically decoupled graphene nanoribbons. ACS Nano 12, 7048–7056 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Bombis, C. et al. Single molecular wires connecting metallic and insulating surface areas. Angew. Chem. Int. Ed. 48, 9966–9970 (2009).

    Article  CAS  Google Scholar 

  80. Berner, S. et al. Boron nitride nanomesh: functionality from a corrugated monolayer. Angew. Chem. Int. Ed. 46, 5115–5119 (2007).

    Article  CAS  Google Scholar 

  81. Zhao, W., Dong, L., Huang, C., Win, Z. M. & Lin, N. Cu- and Pd-catalyzed Ullmann reaction on a hexagonal boron nitride layer. Chem. Commun. 52, 13225–13228 (2016).

    Article  CAS  Google Scholar 

  82. Berner, N. C. et al. Adsorption of 5,10,15,20-tetrakis(4-bromophenyl)porphyrin on germanium(001). Phys. Status Solidi C 9, 1404–1407 (2012).

    Article  CAS  Google Scholar 

  83. Olszowski, P. et al. Aryl halide C–C coupling on Ge(001):H surfaces. J. Phys. Chem. C 119, 27478–27482 (2015).

    Article  CAS  Google Scholar 

  84. Kolmer, M. et al. Polymerization of polyanthrylene on a titanium dioxide (011)-(2×1) surface. Angew. Chem. Int. Ed. 52, 10300–10303 (2013).

    Article  CAS  Google Scholar 

  85. Kolmer, M. et al. On-surface polymerization on a semiconducting oxide: aryl halide coupling controlled by surface hydroxyl groups on rutile TiO2(011). Chem. Commun. 51, 11276 (2015).

    Article  CAS  Google Scholar 

  86. Koch, M., Ample, F., Joachim, C. & Grill, L. Voltage-dependent conductance of a single graphene nanoribbon. Nat. Nanotechnol. 7, 713–717 (2012).

    Article  CAS  PubMed  Google Scholar 

  87. Koch, M. Growth and Characterization of Single Molecular Wires on Metal Surfaces. PhD thesis, Free University Berlin (2013).

  88. Lipton-Duffin, J. A. et al. Step-by-step growth of epitaxially aligned polythiophene by surface-confined reaction. Proc. Natl Acad. Sci. USA 107, 11200–11204 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Linden, S. et al. Electronic structure of spatially aligned graphene nanoribbons on Au(788). Phys. Rev. Lett. 108, 216801 (2012).

    Article  CAS  PubMed  Google Scholar 

  90. Lafferentz, L. et al. Conductance of a single conjugated polymer as a continuous function of its length. Science 323, 1193–1197 (2009).

    Article  CAS  PubMed  Google Scholar 

  91. Zhong, D. et al. Linear alkane polymerization on a gold surface. Science 334, 213–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  92. Cai, Z., She, L., Wu, L. & Zhong, D. On-surface synthesis of linear polyphenyl wires guided by surface steric effect. J. Phys. Chem. C 120, 6619–6624 (2016).

    Article  CAS  Google Scholar 

  93. Vasseur, G. et al. π band dispersion along conjugated organic nanowires synthesized on a metal oxide semiconductor. J. Am. Chem. Soc. 138, 5685–5692 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Dai, J. et al. The role of the substrate structure in the on-surface synthesis of organometallic and covalent oligophenylene chains. Phys. Chem. Chem. Phys 18, 20627–20634 (2016).

    Article  CAS  PubMed  Google Scholar 

  95. Fan, Q. et al. Surface-assisted organic synthesis of hyperbenzene nanotroughs. Angew. Chem. Int. Ed. 52, 4668–4672 (2013).

    Article  CAS  Google Scholar 

  96. Lin, T., Shang, X. S., Adisoejoso, J., Liu, P. N. & Lin, N. Steering on-surface polymerization with metal-directed template. J. Am. Chem. Soc. 135, 3576–3582 (2013).

    Article  CAS  PubMed  Google Scholar 

  97. Otero, R. et al. Lock-and-key effect in the surface diffusion of large organic molecules probed by STM. Nat. Mater. 3, 779 (2004).

    Article  CAS  PubMed  Google Scholar 

  98. Miura, A. et al. Light- and STM tip-induced formation of one-dimensional and two-dimensional organic nanostructures. Langmuir 19, 6474–6482 (2003).

    Article  CAS  Google Scholar 

  99. Flory, P. J. Principles of Polymer Chemistry (Cornell Univ. Press, 1953).

  100. Adisoejoso, J., Li, Y., Liu, J., Liu, P. N. & Lin, N. Two-dimensional metallo-supramolecular polymerization: toward size-controlled multi-strand polymers. J. Am. Chem. Soc. 134, 18526–18529 (2012).

    Article  CAS  PubMed  Google Scholar 

  101. Held, P. A., Fuchs, H. & Studer, A. Covalent-bond formation via on-surface chemistry. Chem. Eur. J. 23, 5874–5892 (2017).

    Article  CAS  PubMed  Google Scholar 

  102. Xi, M. & Bent, B. E. Mechanisms of the Ullmann coupling reaction in adsorbed monolayers. J. Am. Chem. Soc. 115, 7426–7433 (1993).

    Article  CAS  Google Scholar 

  103. Lackinger, M. Surface-assisted Ullmann coupling. Chem. Commun. 53, 7872–7885 (2017).

    Article  CAS  Google Scholar 

  104. McCarty, G. S. & Weiss, P. S. Formation and manipulation of protopolymer chains. J. Am. Chem. Soc. 126, 16772–16776 (2004).

    Article  CAS  PubMed  Google Scholar 

  105. Klappenberger, F. et al. On-surface synthesis of carbon-based scaffolds and nanomaterials using terminal alkynes. Acc. Chem. Res. 48, 2140–2150 (2015).

    Article  CAS  PubMed  Google Scholar 

  106. Marele, A. C. et al. Formation of a surface covalent organic framework based on polyester condensation. Chem. Commun. 48, 6779–6781 (2012).

    Article  CAS  Google Scholar 

  107. Treier, M., Richardson, N. V. & Fasel, R. Fabrication of surface-supported low-dimensional polyimide networks. J. Am. Chem. Soc. 130, 14054–14055 (2008).

    Article  CAS  PubMed  Google Scholar 

  108. Weigelt, S. et al. Surface synthesis of 2D branched polymer nanostructures. Angew. Chem. Int. Ed. 47, 4406–4410 (2008).

    Article  CAS  Google Scholar 

  109. Jiang, L. et al. Synthesis of pyrene-fused pyrazaacenes on metal surfaces: toward one-dimensional conjugated nanostructures. ACS Nano 10, 1033–1041 (2016).

    Article  CAS  PubMed  Google Scholar 

  110. Schlögl, S., Sirtl, T., Eichhorn, J., Heckl, W. M. & Lackinger, M. Synthesis of two-dimensional phenylene-boroxine networks through in vacuo condensation and on-surface radical addition. Chem. Commun. 47, 12355–12357 (2011).

    Article  CAS  Google Scholar 

  111. Schuurmans, N. et al. Design and STM investigation of intramolecular folding in self-assembled monolayers on the surface. J. Am. Chem. Soc. 126, 13884–13885 (2004).

    Article  CAS  PubMed  Google Scholar 

  112. Schmitz, C. H., Ikonomov, J. & Sokolowski, M. Two-dimensional ordering of poly(p-phenylene-terephthalamide) on the Ag(111) surface investigated by scanning tunneling microscopy. J. Phys. Chem. C 113, 11984–11987 (2009).

    Article  CAS  Google Scholar 

  113. Jacobse, P. H., vandenHoogenband, A., Moret, M.-E., Gebbink, R. J. M. K. & Swart, I. Aryl radical geometry determines nanographene formation on Au(111). Angew. Chem. Int. Ed. 55, 13052–13055 (2016).

    Article  CAS  Google Scholar 

  114. Jacobse, P. H. et al. Electronic components embedded in a single graphene nanoribbon. Nat. Commun. 8, 119 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Zhang, H. M. et al. On-surface synthesis of rylene-type graphene nanoribbons. J. Am. Chem. Soc. 137, 4022–4025 (2015).

    Article  CAS  PubMed  Google Scholar 

  116. Chen, Y.-C. et al. Tuning the band gap of graphene nanoribbons sythesized from molecular precursors. ACS Nano 7, 6123–6128 (2013).

    Article  CAS  PubMed  Google Scholar 

  117. Nguyen, G. D. et al. Bottom-up synthesis of N = 13 sulfur-doped graphene nanoribbons. J. Phys. Chem. C 120, 2684–2687 (2016).

    Article  CAS  Google Scholar 

  118. Bronner, C. et al. Aligning the band gap of graphene nanoribbons by monomer doping. Angew. Chem. Int. Ed. 52, 4422–4425 (2013).

    Article  CAS  Google Scholar 

  119. Cai, J. et al. Graphene nanoribbon heterojunctions. Nat. Nanotechnol. 9, 896–900 (2014).

    Article  CAS  PubMed  Google Scholar 

  120. Kawai, S. et al. Atomically controlled substitutional boron-doping of graphene nanoribbons. Nat. Commun. 6, 8098 (2015).

    Article  CAS  PubMed  Google Scholar 

  121. Cloke, R. R. et al. Site-specific substitutional boron doping of semiconducting armchair graphene nanoribbons. J. Am. Chem. Soc. 137, 8872–8875 (2015).

    Article  CAS  PubMed  Google Scholar 

  122. Krasnikov, S. A. et al. Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface. Nano Res. 4, 376–384 (2011).

    Article  CAS  Google Scholar 

  123. Koudia, M. & Abel, M. Step-by-step on-surface synthesis: from manganese phthalocyanines to their polymeric form. Chem. Commun. 59, 8565–8567 (2014).

    Article  Google Scholar 

  124. Bieri, M. et al. Porous graphenes: two-dimensional polymer synthesis with atomic precision. Chem. Commun. 2009, 6919–6921 (2009).

    Article  CAS  Google Scholar 

  125. Eichhorn, J. et al. On-surface Ullmann coupling: the influence of kinetic reaction parameters on the morphology and quality of covalent networks. ACS Nano 8, 7880–7889 (2014).

    Article  CAS  PubMed  Google Scholar 

  126. Ma, C. et al. Seamless staircase electrical contact to semiconducting graphene nanoribbons. Nano Lett. 17, 6241–6247 (2017).

    Article  CAS  PubMed  Google Scholar 

  127. Müllegger, S. & Winkler, A. Dehydrogenation of oligo-phenylenes on gold surfaces. Surf. Sci. 600, 3982–3986 (2006).

    Article  CAS  Google Scholar 

  128. Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    Article  CAS  PubMed  Google Scholar 

  129. Guan, C.-Z., Wang, D. & Wan, L.-J. Construction and repair of highly ordered 2D covalent networks by chemical equilibrium regulation. Chem. Commun. 48, 2943–2945 (2012).

    Article  CAS  Google Scholar 

  130. Dienstmaier, J. F. et al. Isoreticular two-dimensional covalent organic frameworks synthesized by on-surface condensation of diboronic acids. ACS Nano 6, 7234–7242 (2012).

    Article  CAS  PubMed  Google Scholar 

  131. Spitzer, S. et al. Solvent-free on-surface synthesis of boroxine COF monolayers. Chem. Commun. 53, 5147–5150 (2017).

    Article  CAS  Google Scholar 

  132. Arado, O. D. et al. On-surface azide-alkyne cycloaddition on Au(111). ACS Nano 7, 8509–8515 (2013).

    Article  CAS  Google Scholar 

  133. Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Gröning, O. et al. Engineering of robust topological quantum phases in graphene nanoribbons. Nature 560, 209–213 (2018).

    Article  PubMed  CAS  Google Scholar 

  135. Rizzo, D. J. et al. Topological band engineering of graphene nanoribbons. Nature 560, 204–208 (2018).

    Article  CAS  PubMed  Google Scholar 

  136. Nacci, C. et al. Conductance of a single flexible molecular wire composed of alternating donor and acceptor units. Nat. Commun. 6, 7397 (2015).

    Article  PubMed  Google Scholar 

  137. Sakaguchi, H., Matsumura, H., Gong, H. & Abouelwafa, A. M. Direct visualization of the formation of single-molecule conjugated copolymers. Science 310, 1002–1006 (2005).

    Article  CAS  PubMed  Google Scholar 

  138. Clair, S., Ourdjini, O., Abel, M. & Porte, L. Tip- or electron beam-induced surface polymerization. Chem. Commun. 47, 8028–8030 (2011).

    Article  CAS  Google Scholar 

  139. Deshpande, A. et al. Self-assembly and photopolymerization of sub-2 nm one-dimensional organic nanostructures on graphene. J. Am. Chem. Soc. 134, 16759–16764 (2012).

    Article  CAS  PubMed  Google Scholar 

  140. Shen, Q. et al. Self-assembled two-dimensional nanoporous molecular arrays and photoinduced polymerization of 4-bromo-4′-hydroxybiphenyl on Ag(111). J. Chem. Phys. 142, 101902 (2015).

    Article  PubMed  CAS  Google Scholar 

  141. Ho, W. Inducing and viewing bond selected chemistry with tunneling electrons. Acc. Chem. Res. 31, 567–573 (1998).

    Article  CAS  Google Scholar 

  142. Hla, S.-W., Meyer, G. & Rieder, K.-H. Inducing single-molecule chemical reactions with a UHV-STM: a new dimension for nano-science and technology. ChemPhysChem 2, 361–366 (2001).

    Article  CAS  PubMed  Google Scholar 

  143. Hahn, J. R. & Ho, W. Oxidation of a single carbon monoxide molecule manipulated and induced with a scanning tunneling microscope. Phys. Rev. Lett. 87, 166102 (2001).

    Article  CAS  PubMed  Google Scholar 

  144. Anggara, K., Leung, L., Timm, M. J., Hu, Z. & Polanyi, J. C. Approaching the forbidden fruit of reaction dynamics: aiming reagent at selected impact parameters. Sci. Adv. 4, eaau2821 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Wegner, G. Topochemical polymerization of monomers with conjugated triple bonds. Makromol. Chem. 154, 35–48 (1972).

    Article  CAS  Google Scholar 

  146. Pavlicek, N. et al. Polyyne formation via skeletal rearrangement induced by atomic manipulation. Nat. Chem. 10, 853–858 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Patera, L. L. et al. Real-time imaging of adatom-promoted graphene growth on nickel. Science 359, 1243–1246 (2018).

    Article  CAS  PubMed  Google Scholar 

  148. Chong, M. C. et al. Narrow-line single-molecule transducer between electronic circuits and surface plasmons. Phys. Rev. Lett. 116, 036802 (2016).

    Article  PubMed  CAS  Google Scholar 

  149. Chong, M. C. et al. Ordinary and hot electroluminescence from single-molecule devices: controlling the emission color by chemical engineering. Nano Lett. 16, 6480–6484 (2016).

    Article  CAS  PubMed  Google Scholar 

  150. Kawai, S. et al. Quantifying the atomic-level mechanics of single long physisorbed molecular chains. Proc. Natl Acad. Sci. USA 111, 3968–3972 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Kawai, S. et al. Superlubricity of graphene nanoribbons on gold surfaces. Science 351, 957–961 (2016).

    Article  CAS  PubMed  Google Scholar 

  152. Koch, M. et al. How structural defects affect the mechanical and electrical properties of single molecular wires. Phys. Rev. Lett. 121, 047701 (2018).

    Article  CAS  PubMed  Google Scholar 

  153. Pavlicek, N. & Gross, L. Generation, manipulation and characterization of molecules by atomic force microscopy. Nat. Rev. Chem. 1, 0005 (2017).

    Article  CAS  Google Scholar 

  154. Wang, S., Wang, W. & Lin, N. Resolving band-structure evolution and defect-induced states of single conjugated oligomers by scanning tunneling microscopy and tight-binding calculations. Phys. Rev. Lett. 106, 206803 (2011).

    Article  PubMed  CAS  Google Scholar 

  155. Vasseur, G. et al. Quasi one-dimensional band dispersion and surface metallization in long-range ordered polymeric wires. Nat. Commun. 7, 10235 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Morchutt, C. et al. Interplay of chemical and electronic structure on the single-molecule level in 2D polymerization. ACS Nano 10, 11511–11518 (2016).

    Article  CAS  PubMed  Google Scholar 

  157. Gutzler, R. & Perepichka, D. F. π−electron conjugation in two dimensions. J. Am. Chem. Soc. 135, 16585–16594 (2013).

    Article  CAS  PubMed  Google Scholar 

  158. Cardenas, L. et al. Synthesis and electronic structure of a two dimensional π-conjugated polythiophene. Chem. Sci. 4, 3263–3268 (2013).

    Article  CAS  Google Scholar 

  159. Gutzler, R. Band-structure engineering in conjugated 2D polymers. Phys. Chem. Chem. Phys 18, 29092–29100 (2016).

    Article  CAS  PubMed  Google Scholar 

  160. Chen, Z. et al. A heterogeneous single-atom palladium catalyst surpassing homogeneous systems for Suzuki coupling. Nat. Nanotechnol. 13, 702–707 (2018).

    Article  CAS  PubMed  Google Scholar 

  161. Lopinski, G. P., Wayner, D. D. M. & Wolkow, R. A. Self-directed growth of molecular nanostructures on silicon. Nature 406, 48–51 (2000).

    Article  CAS  PubMed  Google Scholar 

  162. Maksymovych, P., Sorescu, D. C., Jordan, K. D. & Yates, J. T. Collective reactivity of molecular chains self-assembled on a surface. Science 322, 1664–1667 (2008).

    Article  CAS  PubMed  Google Scholar 

  163. Haq, S. et al. Versatile bottom-up construction of diverse macromolecules on a surface observed by scanning tunneling microscopy. ACS Nano 8, 8856–8870 (2014).

    Article  CAS  PubMed  Google Scholar 

  164. Liu, J. & Wöll, C. Surface-supported metal-organic framework thin films: fabrication methods, applications, and challenges. Chem. Soc. Rev. 46, 5730–5770 (2017).

    Article  CAS  PubMed  Google Scholar 

  165. Wintterlin, J. & Bocquet, M.-L. Graphene on metal surfaces. Surf. Sci. 603, 1841–1852 (2009).

    Article  CAS  Google Scholar 

  166. Nagashima, A., Tejima, N., Gamou, Y., Kawai, T. & Oshima, C. Electronic dispersion relations of monolayer hexagonal boron nitride formed on the Ni(111) surface. Phys. Rev. B 51, 4606–4613 (1995).

    Article  CAS  Google Scholar 

  167. Fairbrother, A. et al. High vacuum synthesis and ambient stability of bottom-up graphene nanoribbons. Nanoscale 9, 2785–2792 (2017).

    Article  CAS  PubMed  Google Scholar 

  168. Chen, Z. P. et al. Synthesis of graphene nanoribbons by ambient-pressure chemical vapor deposition and device integration. J. Am. Chem. Soc. 138, 15488–15496 (2016).

    Article  CAS  PubMed  Google Scholar 

  169. Deng, D. et al. Catalysis with two-dimensional materials and their heterostructures. Nat. Nanotechnol. 11, 218–230 (2016).

    Article  CAS  PubMed  Google Scholar 

  170. Gutzler, R., Stepanow, S., Grumelli, D., Lingenfelder, M. & Kern, K. Mimicking enzymatic active sites on surfaces for energy conversion chemistry. Acc. Chem. Res. 48, 2132–2139 (2015).

    Article  CAS  PubMed  Google Scholar 

  171. Wurster, B., Grumelli, D., Hötger, D., Gutzler, R. & Kern, K. Driving the oxygen evolution reaction by nonlinear cooperativity in bimetallic coordination catalysts. J. Am. Chem. Soc. 138, 3623–3626 (2016).

    Article  CAS  PubMed  Google Scholar 

  172. Feng, M., Sun, H., Zhao, J. & Petek, H. Self-catalyzed carbon dioxide adsorption by metal-organic chains on gold surfaces. ACS Nano 8, 8644–8652 (2014).

    Article  CAS  PubMed  Google Scholar 

  173. Aviram, A. & Ratner, M. Molecular rectifiers. Chem. Phys. Lett. 29, 277–283 (1974).

    Article  CAS  Google Scholar 

  174. Kuang, G. et al. Negative differential conductance in polyporphyrin oligomers with nonlinear backbones. J. Am. Chem. Soc. 140, 570–573 (2018).

    Article  CAS  PubMed  Google Scholar 

  175. Nacci, C., Viertel, A., Hecht, S. & Grill, L. Covalent assembly and characterization of nonsymmetrical single-molecule nodes. Angew. Chem. Int. Ed. 55, 13724–13728 (2016).

    Article  CAS  Google Scholar 

  176. DiLullo, A. et al. Molecular Kondo chain. Nano Lett. 12, 3174–3179 (2012).

    Article  CAS  PubMed  Google Scholar 

  177. Bazarnik, M. et al. Toward tailored all-spin molecular device. Nano Lett. 16, 577–582 (2016).

    Article  CAS  PubMed  Google Scholar 

  178. Llinas, J. P. et al. Short-channel field effect transistors with 9-atom and 13-atom wide graphene nanoribbons. Nat. Commun. 8, 633 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Kawai, S. et al. Diacetylene linked anthracene oligomers synthesized by one-shot homocoupling of trimethylsilyl on Cu(111). ACS Nano 12, 8791–8797 (2018).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to our co-workers for their valuable contributions to the field over the years that have been generously supported by the European Union (via integrated projects ‘pico inside’, ‘ARTIST’ and ‘AtMol’) as well as the German Research Foundation (DFG via GR 2697/1-1 as well as SFB 658 and SFB 951). This Review Article is dedicated to the memory of Karl-Heinz Rieder.

Author information

Authors and Affiliations

Authors

Contributions

L.G. and S.H. contributed equally to the manuscript.

Corresponding authors

Correspondence to Leonhard Grill or Stefan Hecht.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grill, L., Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020). https://doi.org/10.1038/s41557-019-0392-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-019-0392-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing