Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Simultaneous CO2 capture and metal purification from waste streams using triple-level dynamic combinatorial chemistry


A reduction in CO2 emissions is required to mitigate global warming. Post-combustion carbon capture is one of the most developed technologies that has the potential to meet this goal, but its cost prevents its widespread use. A different approach would be to use CO2 directly as it is captured, before it is stored. Here we explore spontaneous CO2 fixation by industrial polyamines as a strategy to generate dynamic libraries of ligands for metal separation and recovery. We identify the CO2 loadings and solvents promoting the optimal precipitation of each metal from the dynamic libraries of complexes. We demonstrate the separation of lanthanum and nickel using the exhaust gas of an internal combustion engine vehicle, and show that the three metal constituents of the La2Ni9Co alloys used to manufacture the batteries of electric vehicles can be separated and recovered by successive CO2-induced selective precipitations. Beyond the concept of CO2-sourced multi-level dynamic coordination chemistry, this study provides a potential framework for integrated CO2 capture and use through sustainable processes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Simplified virtual triple-level dCLIP dynamic combinatorial system.
Fig. 2: Metal-free dynamic carbamation system dCMeOH.
Fig. 3: Constituent analyses of the dCLIPMeOH–Ln system.
Fig. 4: Selection and amplification of tailored sets of ligands from the dCMeOH–M subsystems (M = Ln, Co or Ni).
Fig. 5: Fraction of components captured into the dCLIPSEtOH–M system from the dCLIPEtOH–M system.
Fig. 6: Flowcharts of individual metal recovery induced by CO2 capture.

Data availability

Crystallographic data for the structures reported in this Article have been deposited at the Cambridge Crystallographic Data Centre, under deposition number CCDC 1951701 (Ni(C0)2Cl2). Copies of the data can be obtained free of charge via All other data supporting the findings of this study, including synthetic and analytical procedures are available within the Article and its Supplementary Information, or from the corresponding author upon reasonable request.


  1. 1.

    Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  2. 2.

    Mac Dowell, N., Fennell, P. S., Shah, N. & Maitland, G. C. The role of CO2 capture and utilization in mitigating climate change. Nat. Clim. Change 7, 243–249 (2017).

    Article  Google Scholar 

  3. 3.

    A European Strategic Long-Term Vision for a Prosperous, Modern, Competitive and Climate Neutral Economy (European Commission, 2018).

  4. 4.

    20 years of Carbon Capture and Storage. Accelerating Future Deployment (International Energy Agency, 2016).

  5. 5.

    COP21 Paris France Sustainable Innovation Forum 2015 (UNFCCC, 2015);

  6. 6.

    Bottoms, R. R. Separating acid gases. US Patent 1783901 (1930).

  7. 7.

    Rochelle, G. T. Amine scrubbing for CO2 capture. Science 325, 1652–1654 (2009).

    CAS  Article  Google Scholar 

  8. 8.

    Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committees of the Regions on the 2017 List of Critical Raw Materials for the EU (European Commission, 2017).

  9. 9.

    Corbett, P. T. et al. Dynamic combinatorial chemistry. Chem. Rev. 106, 3652–3711 (2006).

    CAS  Article  Google Scholar 

  10. 10.

    Lehn, J.-M. Dynamic combinatorial chemistry and virtual combinatorial libraries. Chem. Eur. J. 5, 2455–2463 (1999).

    CAS  Article  Google Scholar 

  11. 11.

    Wong, M. K., Shariff, A. M. & Bustama, M. A. Raman spectroscopic study on the equilibrium of carbon dioxide in aqueous monoethanolamine. RSC Adv. 6, 10816–10823 (2016).

  12. 12.

    Yang, Z.-Z., He, L.-N., Gao, J., Liua, A.-H. & Yu, B. Carbon dioxide utilization with C–N bond formation: carbon dioxide capture and subsequent conversion. Energy Environ. Sci. 5, 6602–6639 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    McGhee, W., Dennis, R., Christ, K., Pan, Y. & Parnas, B. Carbon dioxide as a phosgene replacement: synthesis and mechanistic studies of urethanes from amines, CO2, and alkyl chlorides. J. Org. Chem. 60, 2820–2830 (1995).

    CAS  Article  Google Scholar 

  14. 14.

    Belli Dell’Amico, D., Calderazzo, F., Labella, L., Marchetti, F. & Pampaloni, G. Converting carbon dioxide into carbamato derivatives. Chem. Rev. 103, 3857–3898 (2003).

    Article  Google Scholar 

  15. 15.

    Armelao, L. et al. Preparation of N,N-dialkylcarbamato lanthanide complexes by extraction of lanthanide ions from aqueous solution into hydrocarbons. Inorg. Chem. 53, 4861–4871 (2014).

    CAS  Article  Google Scholar 

  16. 16.

    Moreno Pineda, E., Lan, Y., Fuhr, O., Wernsdorfer, W. & Ruben, M. Exchange-bias quantum tunneling in a CO2-based Dy4-single molecule magnet. Chem. Sci. 8, 1178–1185 (2017).

    Article  Google Scholar 

  17. 17.

    Werner, A. Beitrag zur Konstitution anorganischer Verbindungen. Z. Anorg. Chem. 3, 267 (1893).

  18. 18.

    Klunker, J., Biedermann, M., Schäfer, W. & Hartung, H. Z. N. N-dimethylcarbamato-komplexe von kupfer und zink. Anorg. Allg. Chem. 624, 1503 (1998).

  19. 19.

    Brauer, G. (ed.) Handbook of Preparative Inorganic Chemistry 2nd edn, Vol. 2 (Academic Press, 1965).

  20. 20.

    Chisholm, M. H. & Extine, M. Reactions of transition metal-nitrogen σ-bonds. II. Pentakis(N,N-dimethylcarbamato)niobium(V) and its facile exchange reaction with carbon dioxide. J. Am. Chem. Soc. 97, 1623–1625 (1975).

  21. 21.

    Ehnbom, A., Ghosh, S. A., Lewis, K. G. & Gladysz, J. A. Octahedral Werner complexes with substituted ethylenediamine ligands: a stereochemical primer for a historic series of compounds now emerging as a modern family of catalysts. Chem. Soc. Rev. 45, 6799–6811 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Chang, C. A., Huang, C. S. & Tu, C. F. Characterization of substitution-inert cobalt(III) complex bonded-phase columns for liquid chromatography. Anal. Chem. 55, 1390–1395 (1983).

    CAS  Article  Google Scholar 

  23. 23.

    Pan, Q., Chen, Q., Song, W.-C., Hu, T.-L. & Bu, X.-H. Template-directed synthesis of three new open-framework metal(II) oxalates using Co(III) complex as template. Cryst. Eng. Comm. 12, 4198–4204 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    Goral, V., Nelen, M. I., Eliseev, A. V. & Lehn, J.-M. Double-level “orthogonal’’ dynamic combinatorial libraries on transition metal template. Proc. Natl Acad. Sci. USA 98, 1347–1352 (2000).

  25. 25.

    Lascano, S. et al. The third orthogonal dynamic covalent bond. Chem. Sci. 7, 4720–4724 (2016).

    CAS  Article  Google Scholar 

  26. 26.

    Seifert, H. M., Ramirez Trejo, K. & Anslyn, E. V. Four simultaneously dynamic covalent reactions. Experimental proof of orthogonality. J. Am. Chem. Soc. 138, 10916–10924 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Grommet, A. B. et al. anion exchange drives reversible phase transfer of coordination cages and their cargoes. J. Am. Chem. Soc. 140, 14770–14776 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Hartono, A., Hoff, K. A., Mejdell, T. & Svendsen, H. F. Solubility of carbon dioxide in aqueous 2.5 M of diethylenetriamine (DETA) solution. Energy Proc. 4, 179–186 (2011).

  29. 29.

    Septavaux, J., Germain, G. & Leclaire, J. Dynamic covalent chemistry of carbon dioxide: opportunities to address environmental issues. Acc. Chem. Res. 50, 1692–1701 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Leclaire, J. et al. CO2 binding by dynamic combinatorial chemistry: an environmental selection. J. Am. Chem. Soc. 132, 3582–3593 (2010).

    CAS  Article  Google Scholar 

  31. 31.

    Leclaire, J. et al. Structure elucidation of a complex CO2-based organic framework material by NMR crystallography. Chem. Sci. 7, 4379–4390 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Stern, M. C., Simeon, F., Herzog, H. & Hatton, T. A. Postcombustion carbon dioxide capture using electrochemically mediated amine regeneration. Energy Environ. Sci. 6, 2505–2517 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Stern, M. C. & Hatton, T. A. Bench-scale demonstration of CO2 capture with electrochemically-mediated amine regeneration. RSC Adv. 4, 5906–5914 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    Poisson, G., Germain, G., Septavaux, J. & Leclaire, J. Straightforward and selective metal capture through CO2-induced self-assembly. Green Chem. 18, 6436–6444 (2016).

    CAS  Article  Google Scholar 

  35. 35.

    Harper, N. D. et al. Survey of carbon dioxide capture in phosphonium-based ionic liquids and end-capped polyethylene glycol using DETA (DETA = diethylenetriamine) as a model absorbent. Ind. Eng. Chem. Res. 50, 2822–2830 (2011).

    CAS  Article  Google Scholar 

  36. 36.

    Gaines, G. L. Jr The structure of N-(2-ammonioethyl)carbamate in solution. J. Org. Chem. 50, 411–413 (1985).

    CAS  Article  Google Scholar 

  37. 37.

    Steinhardt, R. et al. Cooperative CO2 absorption isotherms from a bifunctional guanidine and bifunctional alcohol. ACS Cent. Sci. 3, 1271–1275 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Smith, R. M. & Martell, A. E. Critical Stability Constant Vol. 2 (Plenum Press, 1975).

  39. 39.

    Shinoda, S., Terada, K. & Tsukube, H. Induced circular-dichroism chirality probes for selective amino acid detection through screening of a dynamic combinatorial library of lanthanide complexes. Chem. Asian J. 7, 400–405 (2012).

    CAS  Article  Google Scholar 

  40. 40.

    Thodarson, P. Determining association constants from titration experiments in supramolecular chemistry. Chem. Soc. Rev. 40, 1305–1323 (2011).

    Article  Google Scholar 

  41. 41.

    Neranon, K. & Ramstrom, O. Kinetics and thermodynamics of constitutional dynamic coordination systems based on FeII, CoII, NiII, CuII, and ZnII. Eur. J. Inorg. Chem. 24, 3950–3956 (2016).

    Article  Google Scholar 

  42. 42.

    Wang, Y., Yu, J., Guo, M. & Xu, R. [{Zn2(HPO4)4}{Co(dien)2}]·H3O: a zinc phosphate with multidirectional intersecting helical channels. Angew. Chem. Int. Ed. 42, 4089–4092 (2003).

  43. 43.

    Accelerating Breakthrough Innovation in Carbon Capture, Utilization, and Storage (Mission Innovation CCUS, 2018).

  44. 44.

    London Metal Exchange (LME Cobalt, accessed 2 September 2019);

  45. 45.

    Sholl, D. S. & Lively, R. P. Seven chemical separations to change the world. Nature 532, 435–437 (2016).

    Article  Google Scholar 

  46. 46.

    Matysiak, B. M. et al. Antiparallel dynamic covalent chemistries. J. Am. Chem. Soc. 139, 6744–6751 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Men, H. & Lehn, J.-M. Higher order constitutional dynamic networks: [2×3] and [3×3] networks displaying multiple, synergistic and competitive hierarchical adaptation. J. Am. Chem. Soc. 139, 2474–2483 (2017).

    CAS  Article  Google Scholar 

Download references


We thank F. Bosselet, Y. Aizac (powder X-ray diffraction), E. Jeaneau (single-crystal X-ray diffraction), A. Berlioz-Barbier (cold-spray ionization mass spectrometry) and A. Baudouin (diffusion-ordered spectroscopy NMR analyses) for technical support. (We are grateful to O. Tillement for providing access to ICP-OES facilities and to D. J. Heldebrant, L. Vial and F. MacPherson for commenting on drafts of this manuscript. Financial support from Pulsalys to J.S. is gratefully acknowledged. This work was supported by the LABEX iMUST (ANR-10-LABX-0064) of Université de Lyon, within the programme ‘Investissements d’Avenir’ (ANR-11-IDEX-0007) operated by the French National Research Agency (ANR).

Author information




J.L. conceived the idea. J.L. and J.S. designed the experiments. J.S. and C.T. carried out the experimental work. J.S., C.T. and P.J. conducted the analyses. R.G. and C.N. designed and performed the simulations. J.L. and J.S. co-wrote the paper. All authors contributed to revising the paper.

Corresponding author

Correspondence to Julien Leclaire.

Ethics declarations

Competing interests

The authors have filed patent application WO2014188115 relating to this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

The supplementary file contains all synthetic and analytical procedures (including CO2–metal integrated capture analysed in situ and ex situ; metal recovery from La2Ni9Co alloys through CO2 capture; CO2 and metal release; and La/Ni separation using exhaust fumes), data processing methods (including speciation and nonlinear fitting models, statistical repartition in the solid phases and calculation of normalized AFs), supplementary figures and data (DFT calculations and X-ray diffraction images).

Crystallographic data

CIF for Ni(C0)2Cl2; CCDC reference 1951701.

Crystallographic data

Supplementary Video

CO2 and La/Ni separation from exhaust fumes.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Septavaux, J., Tosi, C., Jame, P. et al. Simultaneous CO2 capture and metal purification from waste streams using triple-level dynamic combinatorial chemistry. Nat. Chem. 12, 202–212 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing