Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capturing intrinsic site-dependent spectral signatures and lifetimes of isolated OH oscillators in extended water networks


The extremely broad infrared spectrum of water in the OH stretching region is a manifestation of how profoundly a water molecule is distorted when embedded in its extended hydrogen-bonding network. Many effects contribute to this breadth in solution at room temperature, which raises the question as to what the spectrum of a single OH oscillator would be in the absence of thermal fluctuations and coupling to nearby OH groups. We report the intrinsic spectral responses of isolated OH oscillators embedded in two cold (~20 K), hydrogen-bonded water cages adopted by the Cs+·(HDO)(D2O)19 and D3O+·(HDO)(D2O)19 clusters. Most OH oscillators yield single, isolated features that occur with linewidths that increase approximately linearly with their redshifts. Oscillators near 3,400 cm−1, however, occur with a second feature, which indicates that OH stretch excitation of these molecules drives low-frequency, phonon-type motions of the cage. The excited state lifetimes inferred from the broadening are considered in the context of fluctuations in the local electric fields that are available even at low temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Representative structures of the pentagonal dodecahedron (PD0) water cages.
Fig. 2: Isolating the spectral signatures of individual OH groups in the Cs+·(HDO)(D2O)19 spectrum with IR-IR hole burning.
Fig. 3: Isolating the spectral signatures of individual OH groups in the D3O+·(HDO)(D2O)19·D2 spectrum, highlighting the appearance of a second feature in the isotopomer-specific spectra near 3,400 cm−1.
Fig. 4: Dependence of experimental linewidths of OH stretching features on redshift.

Similar content being viewed by others

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary information files.


  1. Paesani, F., Xantheas, S. S. & Voth, G. A. Infrared spectroscopy and hydrogen-bond dynamics of liquid water from centroid molecular dynamics with an ab initio-based force field. J. Phys. Chem. B 113, 13118–13130 (2009).

    CAS  PubMed  Google Scholar 

  2. Reddy, S. K., Moberg, D. R., Straight, S. C. & Paesani, F. Temperature-dependent vibrational spectra and structure of liquid water from classical and quantum simulations with the MB-pol potential energy function. J. Chem. Phys. 147, 244504 (2017).

    PubMed  Google Scholar 

  3. Auer, B. M. & Skinner, J. L. IR and Raman spectra of liquid water: theory and interpretation. J. Chem. Phys. 128, 224511 (2008).

    CAS  PubMed  Google Scholar 

  4. Skinner, J. L., Pieniazek, P. A. & Gruenbaum, S. M. Vibrational spectroscopy of water at interfaces. Acc. Chem. Res. 45, 93–100 (2012).

    CAS  PubMed  Google Scholar 

  5. Ni, Y. C., Gruenbaum, S. M. & Skinner, J. L. Slow hydrogen-bond switching dynamics at the water surface revealed by theoretical two-dimensional sum-frequency spectroscopy. Proc. Natl Acad. Sci. USA 110, 1992–1998 (2013).

    CAS  PubMed  Google Scholar 

  6. Nicodemus, R. A., Corcelli, S. A., Skinner, J. L. & Tokmakoff, A. Collective hydrogen bond reorganization in water studied with temperature-dependent ultrafast infrared spectroscopy. J. Phys. Chem. B 115, 5604–5616 (2011).

    CAS  PubMed  Google Scholar 

  7. Laage, D., Stirnemann, G., Sterpone, F. & Hynes, J. T. Water jump reorientation: from theoretical prediction to experimental observation. Acc. Chem. Res. 45, 53–62 (2012).

    CAS  PubMed  Google Scholar 

  8. Ashihara, S., Huse, N., Espagne, A., Nibbering, E. T. J. & Elsaesser, T. Ultrafast structural dynamics of water induced by dissipation of vibrational energy. J. Phys. Chem. A 111, 743–746 (2007).

    CAS  PubMed  Google Scholar 

  9. Steinel, T. et al. Water dynamics: dependence on local structure probed with vibrational echo correlation spectroscopy. Chem. Phys. Lett. 386, 295–300 (2004).

    CAS  Google Scholar 

  10. De Marco, L., Fournier, J. A., Thamer, M., Carpenter, W. & Tokmakoff, A. Anharmonic exciton dynamics and energy dissipation in liquid water from two-dimensional infrared spectroscopy. J. Chem. Phys. 145, 094501 (2016).

    PubMed  Google Scholar 

  11. De Marco, L., Ramasesha, K. & Tokmakoff, A. Experimental evidence of Fermi resonances in isotopically dilute water from ultrafast broadband IR spectroscopy. J. Phys. Chem. B 117, 15319–15327 (2013).

    PubMed  Google Scholar 

  12. Asbury, J. B. et al. Dynamics of water probed with vibrational echo correlation spectroscopy. J. Chem. Phys. 121, 12431–12446 (2004).

    CAS  PubMed  Google Scholar 

  13. Stiopkin, I. V. et al. Hydrogen bonding at the water surface revealed by isotopic dilution spectroscopy. Nature 474, 192–195 (2011).

    CAS  PubMed  Google Scholar 

  14. Schaefer, J., Backus, E. H. G., Nagata, Y. & Bonn, M. Both inter- and intramolecular coupling of O–H groups determine the vibrational response of the water/air interface. J. Phys. Chem. Lett. 7, 4591–4595 (2016).

    CAS  PubMed  Google Scholar 

  15. van der Post, S. T. et al. Strong frequency dependence of vibrational relaxation in bulk and surface water reveals sub-picosecond structural heterogeneity. Nat. Commun. 6, 8384 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. van der Post, S. T. & Bakker, H. J. Femtosecond mid-infrared study of the reorientation of weakly hydrogen-bonded water molecules. J. Phys. Chem. B 118, 8179–8189 (2014).

    PubMed  Google Scholar 

  17. Bakker, H. J. & Skinner, J. L. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110, 1498–1517 (2010).

    CAS  PubMed  Google Scholar 

  18. Skinner, J. L., Auer, B. M. & Lin, Y. S. Vibrational line shapes, spectral diffusion, and hydrogen bonding in liquid water. Adv. Chem. Phys. 142, 59–103 (2009).

    CAS  Google Scholar 

  19. Tainter, C. J., Ni, Y., Shi, L. & Skinner, J. L. Hydrogen bonding and OH-stretch spectroscopy in water: hexamer (cage), liquid surface, liquid, and ice. J. Phys. Chem. Lett. 4, 12–17 (2013).

    CAS  PubMed  Google Scholar 

  20. Mallik, B. S., Semparithi, A. & Chandra, A. Vibrational spectral diffusion and hydrogen bond dynamics in heavy water from first principles. J. Phys. Chem. A 112, 5104–5112 (2008).

    CAS  PubMed  Google Scholar 

  21. Stenger, J., Madsen, D., Hamm, P., Nibbering, E. T. J. & Elsaesser, T. Ultrafast vibrational dephasing of liquid water. Phys. Rev. Lett. 87, 027401 (2001).

    Google Scholar 

  22. Asbury, J. B. et al. Ultrafast heterodyne detected infrared multidimensional vibrational stimulated echo studies of hydrogen bond dynamics. Chem. Phys. Lett. 374, 362–371 (2003).

    CAS  Google Scholar 

  23. Yang, N., Duong, C. H., Kelleher, P. J., Johnson, M. A. & McCoy, A. B. Isolation of site-specific anharmonicities of individual water molecules in the I-·(H2O)2 complex using tag-free, isotopomer selective IR-IR double resonance. Chem. Phys. Lett. 690, 159–171 (2017).

    CAS  Google Scholar 

  24. Horvath, S. et al. Anharmonicities and isotopic effects in the vibrational spectra of XH2O, ·HDO, and ·D2O [X = Cl, Br, and I] binary complexes. J. Phys. Chem. A 114, 1556–1568 (2010).

    CAS  PubMed  Google Scholar 

  25. Duong, C. H. et al. Disentangling the complex vibrational spectrum of the protonated water trimer, H+(H2O)3, with two-color IR–IR photodissociation of the bare ion and anharmonic VSCF/VCI theory. J. Phys. Chem. Lett. 8, 3782–3789 (2017).

    CAS  PubMed  Google Scholar 

  26. Lawrence, C. P. & Skinner, J. L. Vibrational spectroscopy of HOD in liquid D2O. VII. Temperature and frequency dependence of the OH stretch lifetime. J. Chem. Phys. 119, 3840–3848 (2003).

    CAS  Google Scholar 

  27. Gale, G. M., Gallot, G. & Lascoux, N. Frequency-dependent vibrational population relaxation time of the OH stretching mode in liquid water. Chem. Phys. Lett. 311, 123–125 (1999).

    CAS  Google Scholar 

  28. Moilanen, D. E. et al. Water inertial reorientation: hydrogen bond strength and the angular potential. Proc. Natl Acad. Sci. USA 105, 5295–5300 (2008).

    CAS  PubMed  Google Scholar 

  29. Imoto, S., Xantheas, S. S. & Saito, S. Ultrafast dynamics of liquid water: energy relaxation and transfer processes of the OH stretch and the HOH bend. J. Phys. Chem. B 119, 11068–11078 (2015).

    CAS  PubMed  Google Scholar 

  30. Schulz, F. & Hartke, B. Dodecahedral clathrate structures and magic numbers in alkali cation microhydration clusters. Chem. Phys. Chem. 3, 98–106 (2002).

    CAS  PubMed  Google Scholar 

  31. Xantheas, S. S. Low-lying energy isomers and global minima of aqueous nanoclusters: structures and spectroscopic features of the pentagonal dodecahedron (H2O)20 and H3O+(H2O)20. Can. J. Chem. Eng. 90, 843–851 (2012).

    CAS  Google Scholar 

  32. Buch, V. et al. The single-crystal, basal face of ice I h investigated with sum frequency generation. J. Chem. Phys. 127, 214502 (2007).

    PubMed  Google Scholar 

  33. Smit, W. J. et al. Excess hydrogen bond at the ice–vapor interface around 200 K. Phys. Rev. Lett. 119, 133003 (2017).

    PubMed  Google Scholar 

  34. Yang, N., Duong, C. H., Kelleher, P. J., McCoy, A. B. & Johnson, M. A. Deconstructing water’s diffuse OH stretching vibrational spectrum with cold clusters. Science 364, 275–278 (2019).

    CAS  PubMed  Google Scholar 

  35. Bailey, C. G., Kim, J., Dessent, C. E. H. & Johnson, M. A. Vibrational predissociation spectra of I-·(H2O): isotopic labels and weakly bound complexes with Ar and N2. Chem. Phys. Lett. 269, 122–127 (1997).

    CAS  Google Scholar 

  36. Leavitt, C. M. et al. Characterizing the intramolecular H bond and secondary structure in methylated GlyGlyH+ with H2 predissociation spectroscopy. J. Am. Soc. Mass Spectr. 22, 1941–1952 (2011).

    CAS  Google Scholar 

  37. Okumura, M., Yeh, L. I., Myers, J. D. & Lee, Y. T. Infrared-spectra of the solvated hydronium ion: vibrational predissociation spectroscopy of mass-selected H3O+·(H2O)n·(H2)m. J. Phys. Chem. 94, 3416–3427 (1990).

    CAS  Google Scholar 

  38. Yang, N., Duong, C. H., Kelleher, P. J. & Johnson, M. A. Unmasking rare, large-amplitude motions in D2-tagged I-·(H2O)2 isotopomers with two-color, infrared–infrared vibrational predissociation spectroscopy. J. Phys. Chem. Lett. 9, 3744–3750 (2018).

    CAS  PubMed  Google Scholar 

  39. Wolke, C. T. et al. Isotopomer-selective spectra of a single intact H2O molecule in the Cs+(D2O)5H2O isotopologue: going beyond pattern recognition to harvest the structural information encoded in vibrational spectra. J. Chem. Phys. 144, 074305 (2016).

    PubMed  Google Scholar 

  40. Fournier, J. A. et al. Site-specific vibrational spectral signatures of water molecules in the magic H3O+(H2O)20 and Cs+(H2O)20 clusters. Proc. Natl Acad. Sci. USA 111, 18132–18137 (2014).

    CAS  PubMed  Google Scholar 

  41. Fournier, J. A. et al. Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster. Science 344, 1009–1012 (2014).

    CAS  PubMed  Google Scholar 

  42. Fournier, J. A. et al. Snapshots of proton accommodation at a microscopic water surface: understanding the vibrational spectral signatures of the charge defect in cryogenically cooled H+(H2O)(n=2–28) clusters. J. Phys. Chem. A 119, 9425–9440 (2015).

    CAS  PubMed  Google Scholar 

  43. Johnson, C. J. et al. Microhydration of contact ion pairs in M2+OH(H2O)n=1–5 (M = Mg, Ca) clusters: spectral manifestations of a mobile proton defect in the first hydration shell. J. Phys. Chem. A 118, 7590–7597 (2014).

    CAS  PubMed  Google Scholar 

  44. Hamm, P. & Stock, G. Nonadiabatic vibrational dynamics in the HCO2 ·H2O complex. J. Chem. Phys 143, 134308 (2015).

    PubMed  Google Scholar 

Download references


We acknowledge extensive discussions with A. B. McCoy on the possible origins of the broadening, as well as unpublished results shared by S. Xantheas on variations in the low-energy structures available to the Cs+·(H2O)20 clusters. This work was supported by the National Science Foundation grant CHE-1900119 and carried out with the instrument developed under AFOSR DURIP grant FA9550-17-1-0267. The part of the study on the H3O+(H2O)20 cluster was carried out under US Department of Energy, Office of Science, Basic Energy Sciences, CPIMS Program under grant award DE-FG02-06ER15800 as part of a larger effort designed to determine the barriers for proton translocation through the cage structure. C.H.D. thanks the National Science Foundation Graduate Research Fellowship for funding under grant DGE‐1122492.

Author information

Authors and Affiliations



M.A.J. conceptualized and supervised the experiments, N.Y., C.H.D. and P.J.K. performed the experiments, N.Y. analysed the data, performed calculations and wrote the simulation codes. All the authors discussed the results and worked on the manuscript.

Corresponding author

Correspondence to Mark A. Johnson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary methods, Figs. 1–8, Tables 1–3 and calculations.

Supplementary Data 1

Raw data used to generate the figures.

Cs 57 mode

Representative low-energy vibrational mode of Cs+·(H2O)20 cluster (57 cm−1).

Cs 60 mode

Representative low-energy vibrational mode of Cs+·(H2O)20 cluster (60 cm−1).

Cs 63 mode

Representative low-energy vibrational mode of Cs+·(H2O)20 cluster (63 cm−1).

Cs 65 mode

Representative low-energy vibrational mode of Cs+·(H2O)20 cluster (65 cm−1).

H 60 mode

Representative low-energy vibrational mode of H3O+·(H2O)20 cluster (60 cm−1).

H 61 mode

Representative low-energy vibrational mode of H3O+·(H2O)20 cluster (61 cm−1).

H 63 mode

Representative low-energy vibrational mode of H3O+·(H2O)20 cluster (63 cm−1).

H 64 mode

Representative low-energy vibrational mode of H3O+·(H2O)20 cluster (64 cm-1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, N., Duong, C.H., Kelleher, P.J. et al. Capturing intrinsic site-dependent spectral signatures and lifetimes of isolated OH oscillators in extended water networks. Nat. Chem. 12, 159–164 (2020).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing